
����������	
�

��������	

��

��������	��
�	�������

����������	�����������������������	���

�	������
 © 1999 Visual Solutions, Inc.
All rights reserved.
Printed and bound in the USA.
VCC-002

Visual Solutions, Inc.
487 Groton Road
Westford, MA O1886

�������� � VisSim, VisSim/C-Code, and flexWires are trademarks of Visual
Solutions. Other products mentioned in this manual are trademarks of
their respective manufacturers.

�	����������
���
���
�	��

The information in this document is subject to change without notice and
does not represent a commitment by Visual Solutions. Visual Solutions
does not assume responsibility for errors that may appear in this
document.

No part of this manual may be reprinted or reproduced or utilized in any
form or by any electronic, mechanical, or other means without permission
in writing from Visual Solutions. The Software may not be copied or
reproduced in any form, except as stated in the terms of the Software
license agreement.

Use, duplication, or disclosure by the US Government is subject to
restrictions as set forth in FAR 52.227-19, subparagraph (c)(i)(ii) of DOD
FAR SUPP 252.227-7013, or equivalent government clause for other
agencies.

���

�	�
��
�

!��"��� ��� #

Registering your software .. v
Conventions used in this book ... v
Getting help... vi

Online help.. vi
Technical support service .. vii

Additional reading material.. vii

����
���$������%����� �� $

What you can do with VisSim/C-Code .. 1
Are you planning to port your C code to another platform .. 1
What you need in order to use VisSim/C-Code ... 2

����
���&��!���������"	���	���������
�	������������������������������������� �

Basic preparation.. 3
Checking for incomplete wiring .. 3
Removing unsupported blocks... 4
Resetting the integration algorithm.. 5

Preparing for DLL generation .. 5
Generating code from automatically-generated DLLs ... 6
Generating code from illegal C identifier characters ... 6

����
����������
�������
����'�	���()���
�*�� ������������������������������ +

Generating an executable file ... 7
Running an executable program... 9

Output data... 9
Exporting data.. 9

��������

�#

����
���,��'�
	��
���-..�������
�	� ��$$

What you can do with DLLs .. 11
Creating a DLL .. 12
Calling a DLL from a VisSim diagram.. 14
Verifying DLL results .. 15
Comparing simulation speed.. 15
Building a custom DLL.. 16

����
���/��������
�����	������	���$0

Generating C code.. 19
Examining a .C file .. 21

'������)�'����
�����������������	��&�

Installation requirements .. 23
Installation procedure... 24

'������)�%������������	�������	�
�.�*���� ��������������������������������&+

'������)���������
�������	���"	��������	�
���!��
"	��� ����������������&0

C support library source code .. 29
Copying the C support library source code to your hard disk .. 30
Compiling and linking the C support library source code.. 30

���) ���

#

!��"���

This manual describes how the components of VisSim/C-Code work together to
provide you with a powerful environment for generating customizable ANSI C code
from VisSim block diagrams and creating DLLs and executable files.

1����
�������	����	"
2���
Before you begin using VisSim, please fill out the enclosed registration card and
mail it to us. As a registered user, you will receive a free subscription to The
flexWire, along with discount promotions and VisSim workshop schedules.

�	�#��
�	�����������
����*		
This manual assumes that you are already familiar with the VisSim graphical user
interface. If you need to review the interface, consult your VisSim User’s Guide.

The following typographical conventions are used to make this manual:

Visual convention Where it’s used

Shortcut key combinations Shortcut key combinations are joined with a plus sign (+).
For example, the command CTRL+C means hold down the
CTRL key while you press the C key.

Hot keys Hot keys are the underlined keys in VisSim’s menus,
commands, and dialog boxes. To use a hot key, press ALT
and then the key for the underlined character. For instance, to
execute the File menu’s new command, hold down the ALT

key while you press the F key, then release both keys and
press the N key.

SMALL CAPS To indicate the names of keys on the keyboard.

���	
��

#�

Visual convention Where it’s used

ALL CAPS To indicate directory names, file names, and acronyms.

Initial Caps To indicate menu names and command names.

���������	
��� To indicate block names.

In addition, unless specifically stated otherwise, when you read “click the mouse...”
or “click on...,” it means to click the left mouse button.

��

��������
To help you get the most out of VisSim, the following online information is
available:

• Online help The online help contains step-by-step instructions for using VisSim
features.

• Online release notes A file named READCC.TXT is installed in your main
VisSim directory. This file contains last minute information and changes that
were discovered after this manual went to print. For your convenience, you
should read this file immediately and print a copy of it to keep with this manual.

3����������
VisSim’s Help program provides online instructions for using VisSim.

� To open help

• Do one of the following:

To Do this
Access the top level of help Select Help from the menu bar or press

ALT+H.

Access help on the selected block Click on the Help button in the dialog box for
the block.

� To close help

• In the Help window, choose File > Exit, or press ALT+F4.

#��

��������������	�
����#���
When you need assistance with a Visual Solutions product, first look in the manual
and read the online READCC.TXT file. If you cannot find the answer, contact the
Technical Support group via a toll call between 9:00 am and 6:00 pm Eastern
Standard Time, Monday through Friday, excluding holidays. The phone number is
978-392-0100.

When you call in, please have the following information at hand:

• The version of VisSim and the version of the software operating environment
that you’re using

• The type of hardware that you’re using

• All screen messages

• What you were doing when the problem happened

• How you tried to solve the problem

Visual Solutions also has the following fax and e-mail addresses:

Address/Number What it’s for

978-692-3102 Fax number

bugs@vissol.com Bug report

doc@vissol.com Documentation errors and suggestions

sales@vissol.com Sales, pricing, and general information

suggest@vissol.com Product suggestions

tech@vissol.com Technical support

'���
�	��������������
�����
Though familiarity with the C programming language is not necessary to use
VisSim/C-Code and run executable programs, if you want to manipulate the
generated C code, you should be able to program in C. The C compiler you have
chosen comes with documentation; however, for a full-length description of the C
programming language and software engineering principles of program construction,
we recommend C: A Software Engineering Approach (P. Darnell and P. Margolis,
Springer-Verlag).

$

����
���$

����%�����

This chapter covers the following information:

• What you can do with VisSim/C-Code

• How to port C code to another platform

• What you need to use VisSim/C-Code

4��
��	�������	�2�
������������	��
VisSim/C-Code provides an efficient way to automatically:

• Translate an entire VisSim diagram in a stand-alone executable file

• Create a VisSim-callable DLL

• Generate customizable C code

Because the C code generated by VisSim/C-Code is optimized for speed, the
resulting executables and DLLs will run up to five times faster than their block
diagram counterparts. This is particularly useful if your applications have high
sampling rates (typically less than 1 ms).

'����	�����������
	��	�
��	������	���
	���	
�������
"	��
C code generated by VisSim/C-Code can be ported to other platforms for
compilation and linking, provided you have an ANSI C compiler and C support
library for that platform. For the latest list of platform-specific C support libraries,
contact Technical Support.

The generated C code can also run on embedded controllers or DSP chips provided
you have the VisSim/C-Code Support Library Source Code. For more information
on the VisSim/C-Code Support Library Source Code, see Appendix C, “Targeting C
Code for Unsupported Platforms.”

����
���$�������
����

&

4��
��	����������	�����
	���������������	��
VisSim/C-Code is an extension to Professional VisSim; to use VisSim/C-Code,
Professional VisSim must be installed on your computer.

You also need an ANSI C compiler. It is recommended, though not required, that
you use the Microsoft Visual C4.x or 5 compiler; VisSim/C-Code is configured to
use these compilers. If you choose to use a different compiler, refer to the
documentation that accompanies the compiler for information on compiling and
linking your source code.

�

����
���&

!���������"	���	���������
�	�

This chapter covers the following information:

• Basic preparation to be performed on all block diagrams

• Additional preparation for generating DLLs

• Advanced preparation for generating code that includes DLLs

%������������
�	�
Whether your goal is to generate a stand-alone executable file, a DLL function, or
source C code, you should perform the following tasks:

• Check your block diagram for incomplete wiring

• Remove unsupported blocks from your block diagram

• Set the integration algorithm to Runge Kutta 2nd

���� ����"	�����	����
��2�����
A block diagram containing one or more unconnected inputs will probably produce a
faulty .C file. An easy way to verify that all connector tabs are wired is to use the
Check Connections option before you generate the C code.

� To check for incomplete wiring

1. Choose Simulate > Simulation Properties.

2. Click on the Preferences tab.

3. Activate the Check Connections option and click on OK.

4. Choose Simulate > Go or press the toolbar button.

����
���&�������
�����	�������������
����

,

 For each unconnected connector tab, VisSim highlights the block in red and
displays a dialog box indicating the name of the faulty block and the
unconnected input. The dialog box provides the following options:

• Abort or Retry. VisSim finishes checking the diagram for incomplete
wiring, then halts the simulation.

• Ignore. VisSim finishes checking the diagram for incomplete wiring, then
continues the simulation.

Blocks remain highlighted in red until you click the right mouse button over them, or
choose the Edit > Clear Errors command, which clears all highlighted blocks.

1��	#����������	�
���*�	� �
A small set of blocks are not supported by VisSim/C-Code. When VisSim/C-Code
encounters one of these blocks, it either translates the block into an ASCII data
stream or a call to the EMPTY function.

Most of VisSim’s Signal Consumer blocks are translated into function calls that
produce ASCII data streams. ASCII data streams can be redirected to a file (after
compilation and linking is complete) and then read into any number of applications
with graphical plotting capabilities.

For maximum performance of your executable or DLL, it is recommended to remove
unsupported blocks.

The table below lists the blocks not supported by VisSim/C-Code.

Block name Produce ASCII stream Call EMPTY function
�	���� �

����� �

��
� �

��	
����	� �

��
� �

��������������������
�	� �

��
���� �

��������	
����	� �

��
����� �

����� �

��	����� �

����
���&�������
�����	�������������
����

/

Block name Produce ASCII stream Call EMPTY function
���� �

	�������� �

���������	�	��	 �

���� �

������� 	! �

�������"��! �

��� �

��������� �

�	�	��	 �

* Call Technical Support for availability.

1���

����
�����
����
�	�����	��
��
The integration algorithm is re-set to Runge Kutta 2nd order if it was previously set
to an algorithm other than Runge Kutta 2nd order or Euler. VisSim/C-Code notifies
you if it changes the integration algorithm.

!���������"	��-..�������
�	�
If your goal is to create a DLL function, you must encapsulate the blocks to be
converted into a DLL in a single compound block. If the compound block has
numerous inputs and outputs, you should also label in the input and output connector
tabs. Connector labels are carried over to the DLL making it easier to wire the DLL
into the diagram.

� To create a compound block

1. Select the blocks that are to be converted into a DLL.

2. Choose Edit > Create Compound Block to create a compound block.

3. Label the input and output connector tabs of the compound block by double-
clicking the mouse over each connector tab and entering a unique name in the
Connector box.

����
���&�������
�����	�������������
����

5

������
�����	���"�	����
	��
�������������
���-..�
You can include pre-existing, automatically-generated DLLs in the portion of the
diagram that is to be converted into an executable file, DLL function, or source code
provided the DLL is declared in USERDLL.H and the library for the DLL is set in
VSMDLL32.BAT.

For example, to generate a DLL from a compound block in which the DLL named
READ_INPUT_FILE is embedded, do the following:

• In USERDLL.H, add:

__declspec(dllexport) void _stdcall EXPORT READ_INPUT_FILE
(double p[],double in [],double out[]);

This line declares the exported DLL function READ_INPUT_FILE so that
automatic DLL code generation will make the proper external reference to it.

• In VSMDLL32.BAT, add:

set userlibs=READ_INPUT_FILE.LIB

This line associates the alias userlibs with the library file for the exported DLL
function.

To associate multiple libraries with userlibs, separate each library file with a
comma. For example:

set userlibs=READ_INPUT_FILE.LIB, READ_OUTPUT_FILE.LIB

������
�����	���"�	������������������
���
The following characters are not legal C identifier characters: +, -, *, #, @, !.
Although these characters are ASCII, they are not allowed in C variable names.
During C code generation, these characters are converted into underscore (_)
characters. This limitation is important when naming blocks that will eventually be
compiled into C code.

+

����
����

����
�������
����'�	���()���
�*��

This chapter covers the following information:

• Generating a stand-alone executable

• Running an executable file

������
��������)���
�*���"���
This procedure describes how to create a stand-alone executable file from a block
diagram. Before you begin, prepare the diagram for code generation as described in
Chapter 2, “Preparing for Code Generation.”

� To generate a stand-alone executable file

1. Open the block diagram to be converted into an executable file.

2. Choose Simulate > Code Gen. The Code Generation Setup dialog box appears.

����
����������
�����
���
���������������
���

6

3. The Result File box displays diagram-name.C, where diagram-name is the
name of the current block diagram. By default, VisSim/C-Code uses the block
diagram name as the name for the stand-alone executable. For example, if you
enter ACMOTOR.C, VisSim/C-Code creates an executable file called
ACMOTOR.EXE.

4. The Result Dir box indicates where the executable file will be stored. For
convenience, the destination directory should be the directory that contains the
C support library (CG32.LIB). To change the directory, click on the Change Dir
button and select a new directory.

5. The Target box contains the target platform for code generation. Choose the PC
option, if it is not already selected.

6. Choose the following options you want. Options that do not apply are dimmed.

Activate this option To
Include Block Nesting as Comment Include comments in the generated code that

indicate the compound blocks that
correspond to the code.

Embed Maps in Generated Code Insert map file contents directly into the
generated code. When this option is
activated, the resulting executable will be
portable because the map file is no longer
needed.

Perform “C” Language Type
Conversion

Use C language rules for determining result
types. This has the effect of keeping the
calculation in integer format longer and
consequently results in more efficient run
times on embedded processors

Code generation options that do not apply to stand-alone
executables

When creating a stand-alone executable, the Label Block and
Connectors, Include VisSim Communication Interface, Block Name,
and Function Name options do not apply and should therefore be de-
activated.

7. Click on the Compile button.

8. VisSim/C-Code opens a text window in which it displays the creation of the
executable file. When the file has been generated, press any key to return to the
Code Generation Setup dialog box.

9. Click on the Done button.

����
����������
�����
���
���������������
���

0

1�����������)���
�*�����	����
To run an executable program, you enter the executable file name at the MS/DOS
command prompt or you can enter the file name in the text box for the Run
command in the Start menu.

3�
��
���
�
The output information produced by Signal Consumer blocks (��
����,
��
�����, �����, ����, ����, or
���������) appear as ASCII data streams.
For example, the results of a single input ���� block are displayed in a single
column. Each row reflects the signal value at each step in the simulation. The
number of rows equals the total number of steps in the simulation.

If a Signal Consumer block has multiple inputs, the results for each input signal are
displayed in separate columns.

()�	�
������
�
If you want another program to analyze or manipulate your simulation data, you can
wire an �#���� block into the diagram before creating the executable file. The
�#���� block writes from one to 32 signals to a file in .DAT, .M, .MAT, or .WAV
file format. For more information on the �#���� block, see the VisSim User’s
Guide.

$$

����
���,

'�
	��
���-..�������
�	�

This chapter covers the following information:

• Setting code options during compilation and linking

• Generating a DLL

• Altering the VisSim initialization file

• Calling a DLL from a VisSim diagram

• Verifying DLL results

• Comparing simulation speed

• Creating custom DLL dialog boxes

4��
��	�������	�2�
��-..�
• Speed up simulation time

When a block diagram contains DLLs, it requires less disk space and memory
since its executable program files contain the names of the DLL functions but
not the code for the functions. For particularly large diagrams, the use of
VisSim-callable DLLs can significantly increase the speed of your simulations.

• Perform multi-rate execution

When a compound block is converted into a DLL, the DLL retains the step size
and integration method in use at the time of DLL generation. If the diagram that
calls the DLL has a faster or slower step rate, the DLL skips or adds steps to
maintain its own clock rate. This allows you to have a low frequency overall
diagram with high frequency components compiled as DLLs.

����
���,��������
�������������
����

$&

• Protect intellectual property

Because DLLs cannot be reverse-engineered into readable source code, you can
be sure that no one can access your intellectual property.

����
������-..
Only compound blocks can be converted into DLLs. When a compound block is
converted into a DLL, the DLL retains the step size and the integration method in
use at the time of DLL generation, and not those selected or specified by the diagram
calling the DLL. The DLL does, however, use the simulation start and end times of
the diagram that calls it.

� To create a DLL

1. Open the block diagram that contains the blocks you want to convert into a
DLL.

2. Prepare the diagram for DLL generation, as described in Chapter 2, “Preparing
for Code Generation.”

3. Select the compound block to be converted into a DLL.

4. Choose Simulate > Code Gen.

The Code Generation Setup dialog box appears.

5. The Result File box displays diagram-name.C, where diagram-name is the
name of the current block diagram. By default, VisSim/C-Code uses the block
diagram name as the name for the DLL. For example, if you enter
ACMOTOR.C, VisSim/C-Code creates a DLL called ACMOTOR.DLL.

����
���,��������
�������������
����

$�

 If you are creating more than one DLL from a single VisSim diagram, be sure to
give each DLL a unique name.

6. The Result Dir box indicates where the DLL will be stored. If you want to
change the location, click on the Change Dir button.

7. The Target box contains the target platform for code generation. Choose the PC
option, if it is not already selected.

8. Activate the Include VisSim Communication Interface option; then choose any
of the other options you want.

Activate this option To
Include Block Nesting as Comment Include comments in the generated code that

indicate the compound blocks that
correspond to the code.

Embed Maps in Generated Code Insert map file contents directly into the
generated code. When this option is
activated, the resulting DLL will be portable
to platforms that do not support a file system,
because the map file is no longer needed.

Perform “C” Language Type
Conversion

Use C language rules for determining result
types. This has the effect of keeping the
calculation in integer format longer and
consequently results in more efficient run
times on embedded processors.

Label Block and Connectors Include block and connector names with the
DLL that indicate the source compound
block in the VisSim diagram from which the
DLL was created.

It is a good idea to activate this option,
particularly when the resulting DLL has
numerous input and output connector tabs.
The connector names make it easy to identify
the correct wiring paths.

Block Name Specifies the name that will appear on the
resulting userFunction block to which the
DLL is bound. By default, the block name is
the name of the compound block.

Function Name Specifies the name of the DLL function. It
defaults to cgMain. There is no need to edit
this name.

����
���,��������
�������������
����

$,

9. Click on the Compile button.

10. VisSim/C-Code opens a text window in which it displays DLL creation. When
the DLL has been generated, press any key to return to the Code Generation
Setup dialog box.

11. Click on the Done button.

����������-..�"�	������������������
The process of calling a DLL from a VisSim diagram involves binding the DLL to a
�
��$�	����	 block and then wiring the �
��$�	����	 block into the diagram.
During simulation, each time the �
��$�	����	 block is executed, VisSim calls the
DLL.

After you bind a DLL to a �
��$�	����	 block, VisSim/C-Code renames the
�
��$�	����	 block with the DLL name. For example, if you created a DLL
named AC Motor, VisSim/C-Code renames the �
��$�	����	 block AC Motor.

If you elected to retain connector labels when you created the DLL, you can display
the labels on the �
��$�	����	 block using the View > Connector Labels
command. Connector labels make it easy to correctly wire a �
��$�	����	 block
into a diagram.

� To bind a DLL to a userFunction block

1. From the Blocks menu, drag a �
��$�	����	 block into your diagram.

2. Choose Edit > Block Properties.

3. Point to the �
��$�	����	 block and click the mouse.

The DLL Properties dialog box appears.

4. Do the following:

• In the DLL File box, enter the complete file specification of the DLL. This
name corresponds with name specified in the Result File box in the Code
Generation Setup dialog box, as described on page 12. If you are not sure
where the DLL file resides, click on the Select button to locate it.

����
���,��������
�������������
����

$/

• In the Base Function box, enter cgMain.

5. Click on the OK button, or press ENTER.

� To view connector labels on a DLL

• Choose View > Connector Labels.

����"�����-..������
�
Before editing the block diagram to replace the existing blocks with a corresponding
DLL, it is a good idea to verify that the DLL operates correctly.

For example, in following diagram, a DLL is created from the AC Motor (dq)
compound block. To verify that the DLL operates correctly, the inputs to the
compound block are fed into the DLL. A second ���� block, with the same
properties as the original ���� is placed in the diagram. If both ����
 register the
same results when you simulate the diagram, then the DLL is correct.

�	��������������
�	�������
You can easily compare how much faster a simulation runs with a DLL than without
using the Notify At Simulation End option in the Simulation Properties dialog box.
This option displays how long it takes to run a simulation in simulated time and real
time.

����
���,��������
�������������
����

$5

� To compare performance

1. Choose Simulate > Simulation Properties; then click on the Preferences tab.

2. Activate the Notify At Simulation End option and click on the OK button.

3. Disconnect the DLL from the diagram.

4. Run the simulation.

5. Reconnect the DLL to the diagram and disconnect the corresponding compound
block from the diagram.

6. Run the simulation.

7. Compare the real time simulation results from the two simulation runs.

%�������������
	��-..
If you want to add a custom dialog box to a DLL, you have to compile and link the
code manually.

Nowadays, most languages have a Project Build facility that automates the process
of building an executable or DLL. The following procedure guides you through the
process of building a project using the Microsoft Visual C++ v4 compiler. Refer to
the documentation for the application language you are using for specific
instructions.

� To build a custom DLL with Microsoft Visual C++ v4

1. Invoke the Compiler environment.

2. Do the following to create a new project workspace:

• Choose File > New.

• Under New category, select Project Workspace and click on OK.

• In the New Project Workspace dialog box, do the following:

• Under Project Type, select Windows Dynamic Link library (.DLL).

• In the Name box, enter a name for the project. This name becomes the
name of the DLL.

• If you want to change the directory in which the project is stored, enter
a new location in the Location box.

• Click on the Create button.

3. Choose Insert > Files Into Project to add the following files to the project
workspace:

����
���,��������
�������������
����

$+

• The generated .C file

• \VISSIM30\CG\LIB\CGDLL32.LIB

• \VISSIM30\VSDK\LIB\VISSIM32.LIB

4. Do the following to establish the settings for the build:

• Choose Build > Settings.

 The Project Settings dialog box appears.

• Click on the C/C++ tab.

• Under Category, select Preprocessor.

• In the Additional Include Directories box, specify the following:

 \VISSIM30\VSDK\INCLUDE,\VISSIM30\CG\INCLUDE

• Click on the OK button.

5. Choose Build > Build to build the project.

��	�*����		
���
If you receive a Link warning message during the build, you should instruct the
Project Build facility to ignore LIBC.LIB. If you are using the Microsoft Visual C++
v4 compiler, follow these steps to remove LIBC.LIB:

1. Choose Build > Settings.

2. Under the Project Settings dialog box, click on the Link tab.

3. Under Categories, specify Input.

4. Under Ignore Libraries, enter LIBC.LIB.

5. Click on the OK button.

6. Choose Build > Build.

$0

����
���/

������
�����	������	��

This chapter covers the following information:

• Generating C code

• Editing existing C code

• Using a Project Build facility to create .EXE or .DLL files

������
�������	��
During code generation, VisSim/C-Code translates blocks into C source statements.
The .C file typically includes the following information:

• Include directives to call the necessary header files

• Declaration of the variables

• A function where all the simulation calculations are performed

• A main function, which calls the above function and contains the simulation
parameters, including the duration of the simulation, the simulation time step,
and the integration method

• A void limitIntegOutput () { } function to implement ������ 	��������
blocks (if needed)

����
���/��������
����������������

&7

Unsupported blocks

A small set of blocks are unsupported in VisSim/C-Code and are
translated into function calls that either produce ASCII data streams or
EMPTY returns. These blocks are listed on page 4. If you are familiar
with the C language, you can write your own C functions for
unsupported blocks.

� To generate a .C file

1. Prepare the block diagram for source code generation as described in Chapter 2,
“Preparing for Code Generation.”

2. Choose Simulate > Code Gen.

The Code Generation Setup dialog box appears.

3. In the Result File box, enter a name for the generated .C file. If you do not
specify a file name, VisSim uses the current block diagram name and appends a
.C extension.

4. The Result Dir box indicates where the .C file will be stored. For convenience,
the destination directory should be the directory that contains the C support
library (CG32.LIB). To change the directory, click on the Change Dir button
and select a new directory.

5. The Target box contains the target platform for code generation. Choose the PC
option, if it is not already selected.

����
���/��������
����������������

&$

6. Choose the additional code generation options you want.

If the source code is to be translated into a See

Stand-alone executable “Generating an executable file” on
page 7 for information on the options
that you can select.

DLL “Creating a DLL” on page 12 for
information on the options that you can
select.

7. Click on the Code Gen button.

()�������������"���
You may find that you want to examine the source code you generate. The Browse
feature allows you to examine or edit C source code.

On the Windows platforms, Browse starts up Microsoft Notepad or Wordpad.

� To open a .C file with Browse

1. Choose Simulate > Code Gen.

2. In the Result File box, enter the name of the .C file to be opened.

3. Click on the Browse button.

&�

'������)�'

��
�����������������	��

The Install program that comes on your VisSim/C-Code disk installs the
VisSim/C-Code program and other utility files on your hard disk. You use the
Install program to:

• Install VisSim/C-Code on your computer for the first time

• Upgrade your existing copy of VisSim/C-Code to version 3

As part of the installation procedure, a READCC.TXT file is copied to the directory
in which you install VisSim/C-Code. This file contains technical additions and
corrections that were not available when this manual went to print. It’s a good idea
to read this file, and make a hard copy of it to keep with this user’s guide.

��
����
�	����8�������
�
VisSim/C-Code runs on personal computers using the Intel 80286 or higher
processor, including the IBM Personal System/2 Series, the IBM PC AT, and 100%
compatibles. To use VisSim/C-Code, your computer must have the following
components:

• Visual Solutions VisSim 3.0+

• Microsoft Visual C4.x or 5 compiler

• 200K of free hard disk space

• 3½” disk drive

• EGA or higher resolution monitor

'������)�'��� ���
������!�����"������

&,

��
����
�	����	������
You use the Install program to install VisSim/C-Code on your computer for the first
time or to upgrade your existing copy of VisSim/C-Code to a more recent version of
the software.

When you upgrade VisSim/C-Code, the installation program replaces old program
and utility files with new ones. If there are existing files that you want to retain,
Install gives you the opportunity to specify the files not to be overwritten.

� To install or upgrade VisSim/C-Code

This procedure assumes that you are installing from drive A to your hard disk. If you
are installing from a different drive, substitute the correct drive designation in the
installation procedure.

1. Start Windows.

2. Insert the disk labeled VisSim/C-Code into drive A.

3. Do one of the following:

• Click on Start and choose Run.

• Select File from the Program Manager menu bar and choose the Run
command.

4. In the Command Line box, type A:INSTALL and click on the OK button, or
press ENTER.

5. An Install dialog box appears.

 Install asks you where you want to install VisSim/C-Code. You can accept the
default path or type in a different directory. Make sure that the VisSim/C-Code
files are installed on the same disk and directory that contain your
VISSIM.EXE.

 If you are installing VisSim/C-Code over an earlier version, the Install program
will replace the old utility files with new ones, and retain all user-written files. If
you’ve made changes to old files that were supplied with VisSim/C-Code, you
can request that Install ask for confirmation before it overwrites each file. An X
in the Ask Before OverWriting Existing Files check box activates this option.

6. To accept the information in the dialog box, click on the Continue button, or
press ENTER.

 Install installs an updated VisSim executable in the directory you specified. It
also creates a subdirectory named \CG in which it installs code-generation-
related files.

'������)�'��� ���
������!�����"������

&/

 When the installation is complete, VisSim displays a dialog box indicating that
VisSim/C-Code has been successfully installed.

7. Click on the OK button, or press ENTER.

&+

'������)�%

����������	�������	�
�.�*����

In addition to the program and utility files necessary to generate .C, .OBJ, .EXE, and
.DLL files, VisSim/C-Code comes with a C support library (CG32.LIB) for the
Windows platform. During installation, VisSim/C-Code places the C support library
in the \VISSIM30\CG directory.

The C support library is a collection of object files that contain compiled instructions
to support blocks for which there is no direct translation into C source code. These
blocks include:

• ���	%

• ��&&��

• ���

������

• ���'������

• ����

• �����

• �#����

• �����

• �	��������

• �	����

• ������ 	��������

• ��

• �������

• ���
�(���	

'������)�%���!�����"�������������������
�#

&6

• ��
�� 	��������

•
����)����

•
���

• ��������

• ���	
&��$�	����	

• ���	
��
�

• �	�������

• �
�

&0

'������)��

�����
�������	���"	��������	�
��
!��
"	���

 The source code for the C support library is required for the following reasons:

• To enhance the functionality of the C support library.

• To generate executable files to be run on processors other than the ones
supported by the object code version of the C support library shipped with
VisSim/C-Code. For example, to embed the source code library in an Hitachi
chip, you need to recompile and relink the support library using an Hitachi
compiler.

The source code for the C support library is a separate product that is not
automatically included when you purchase VisSim/C-Code.

������	�
���*������	������	��
The source code for the C support library comprises the following files:

File name Description
CG.C Main driver routines

CG.H Function prototypes

CGEN.H Structure definitions

CGIO.C File I/O

CGIO.H Function prototypes

CROSSDET.C Cross detection

CROSSDET.H Function prototypes

'������)�����
���������������	���$�������������
�	����

�7

File name Description

FILEIO.C File parsing

FILEIO.H Function prototypes

IMPORT.C File import/export

IMPORT.H Function prototypes

MAT.C Matrix operations

MAT.H Function prototypes

MATDIV.C Matrix divide

MATDIV.H Function prototypes

READCC. TXT ASCII text file containing additional technical information
and corrections to the manual

SIMIO.H Function prototypes

VCSRC.MAK C code source makefile for Microsoft C v6.0

XFER.C Transfer function support

XFER.H Function prototypes

UNIX.MAK Make file for Unix platforms

VCSRC.MAK Project for Microsoft Visual C

�	������
���������	�
���*������	������	���
	��	�����������
Copy the contents of the VisSim/C-Code Support Library Source Code disk to the
code generation subdirectory.

�	��������������� ����
���������	�
���*������	������	��
To compile and link the support library source code, you can use the makefile named
SRC.MAK that was shipped with VisSim/C-Code. This makefile resides in the
C:\VISSIM30\CG.

Platform The makefile is configured to use

Windows Microsoft Visual C 4.0+

UNIX Gnu and native ANSI C compilers

Note: For information about the C support library, refer to Appendix B, “VisSim/C-
Code Support Library.”

� To compile and link the support library source code

• Enter one of the following commands at the system prompt:

'������)�����
���������������	���$�������������
�	����

�$

To use this makefile Use

Microsoft C Open the project VCSRC.MAK

Gnu C or native ANSI C make -f unixsrc.mak

��

���)

B
Block Name option, 8, 13
browsing C code, 21

C
C code

browsing, 21
C code generation

illegal characters, 6
integration algorithm, 5
porting, 1
procedure, 19
unsupported blocks, 4
uses, 1
wiring, 3

C compiler, choosing, 2
C identifer characters, illegal, 6
C support library, 27
C support library source code, 29–31

compiling and linking, 30
copying to disk, 30

CG32.LIB. See C support library
checking wiring connections, 3
Code Gen (Simulate), 7, 12, 19
compound blocks, for DLL generation, 5
Connector Labels (View), 15
conventions, v

D
DLLs

binding to userFunction block, 14
building custom dialog boxes, 16
calling from VisSim, 14
comparing performance, 15
compound blocks, 5
creating, 12

DLLs (continued)

generating code from, 6
uses, 11
verification, 15

E
Embed Maps in Generated Code option, 8, 13

F
Function Name option, 8, 13

G
generating C code, 19

customizing, 21
from automatically-generated DLLs, 6
illegal characters, 6
integration algorithm, 5
unsupported blocks, 4
wiring, 3

generating stand-alone exectuables, 7

I
Include Block Nesting as Comment option, 8, 13
Include VisSim Communication Interface option, 8,

13
installing VisSim/C-Code

procedure, 24
requirements, 23

L
Label Block and Connectors option, 8, 13

M
multi-rate execution, 11

 ����

�,

O
online help, vi

P
Perform C Language Type Conversion option, 8, 13
porting C code, 1
preparing for code generation

integration algorithm, 5
unsupported blocks, 4
wiring, 3

preparing for DLL generation
creating compound blocks, 5

Project Build facilities, 16
protecting intellectual property, 12

R
READCC.TXT, vi, 23

registration, v

S
speeding up simulation time, 11
stand-alone executables

exporting data, 9
generating, 7
output data, 9
running, 9

T
technical support, vii

U
unsupported blocks, 4
userFunction block

setting up, 14

