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Introduction
A typical motion control system incorporates a number of embedded feedback loops. The output
from one loop becomes the input, or command, to the next loop. Each of these loops has a specific
purpose.

The motion control system illustrated here contains three embedded feedback loops, one each for
current (or torque), velocity, and position.

velocity loop

Motor

�

�

position loop

�

�

�

� �

�

current�loop

position feedback

velocity feedback

current feedback

Figure 1. Three loop control system

The position loop receives a position command and compares it to the actual position (X), the
difference (error) is processed and issued as a velocity command to the velocity loop. The velocity
loop compares this command with the actual velocity (V), the difference is the velocity error
which, in turn, is processed and issued as a current command to the current loop. The current loop
takes this command, compares it with the actual current, processes it, and outputs the current to
the motor.

The function of each embedded feedback loop is different. The position loop provides positional
accuracy and static stiffness while the velocity loop provides dynamic stiffness. The current loop
ensures that current quickly and accurately reaches the commanded value.
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By definition 
X

F
stiffness

∆
∆= , as shown below.

Figure 2 shows this relationship pictorially. A weight attached to a spring sits at rest. When a
force is applied the weight changes position, ∆x, causing the spring to compress. The stiffness is
the ratio of applied force divided by the change in position, ∆x.

FORCE

FORCE

X

Figure 2. Static stiffness

In English units, stiffness is expressed in lbs/inch for linear motion and in-lb/radian for rotary
motion. In this example, the stiffness is called the static stiffness because it is provided by the
position loop. If the applied force is time variant, stiffness is called dynamic stiffness and is
controlled by the velocity loop.

Depending upon the intended application, the topology of the motion control system may change.
Some systems will include additional process loops, while others will eliminate them. The
downside of closing multiple imbedded loops is the need to ensure that the loops don’t fight each
other. The innermost loop must be the fastest (the current loop in Figure 1), with each successive
loop slower than the one before.

Dynamic Performance Measurement
A design engineer measures the dynamic performance of a motion control system by determining
the system’s bandwidth. Bandwidth is the measure of the system’s ability to follow a command.
The higher the bandwidth the closer the match.

The traditional approach for measuring bandwidth is to issue a sinusoidal command to the system
and compare it to the system’s response. At low frequencies, the two will be nearly identical. As
the frequency of the sinusoid increases, a phase delay is seen between command and response.

Figure 3 shows a modified motion control system. The command is changed from a step with a
constant amplitude to a sinusoid whose amplitude is constantly changing. The period of the
sinusoid is 100 sec (0.01 Hz) and the system’s response is virtually identical to the command.
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Figure 3. System response to a low frequency sinusoidal command

Increasing the frequency of the command causes a dramatic change to occur in the system’s
response. As shown in Figure 4, the command is increased in frequency to 1 radian/sec (0.16 Hz).
Not only is the system’s response delayed from the command, but the amplitude of the waveform
is also much lower.
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Figure 4. System response to a higher frequency sinusoidal command

Typically, system bandwidth is defined as the frequency that yields a 70.7% (-3db) response of
the commanded value. The commanded frequency in the simulation above produces such a
response; therefore, the bandwidth of the system is 1 radian/sec (0.16 Hz).

The previous plots have been time domain plots that look at amplitude over time. An alternative
approach is to look at either magnitude or phase versus frequency plots, called Bode plots. It is
much easier to determine bandwidth from a Bode plot than from a time plot; however, it is also
much more difficult to create a frequency domain plot than a time domain plot – at least it was
until simulation programs such as VisSim came about.
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Figure 5. Bode plots of magnitude and phase for the system in Figure 4

The bandwidth can be taken from either a magnitude or phase plot. In a magnitude plot,
bandwidth is the frequency at which the amplitude falls to 0.7 of the input. In a phase plot, it is the
frequency at which a 45° phase shift occurs. Both plots in Figure 5 show a bandwidth of
approximately 0.16 Hz, the same value seen in the time plot of Figure 4.
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Classical Control System Analysis
The foundation of the preceding discussion has been the closed-loop feedback system. Since these
systems are dynamic in nature the mathematical analysis of these systems generally involves the
use of differential equations. The mathematics involved in the analysis can be greatly simplified
through the use of the Laplace transform, which changes the frame of reference from one of time
to one of frequency.

For the purpose of this discussion, it isn’t necessary to be comfortable working with differential
equations or even Laplace transforms. All that will be required is a basic understanding of algebra.
The objective of this analysis is to describe how the output of a system changes as a function of a
change in input to the system. The mathematical representation of this is called the transfer
function. The blocks used to derive the closed-loop transfer function are directly applied to model
the system with VisSim.

Deriving a Simple Transfer Function
A block diagram of a simple closed-loop feedback system is shown in Figure 6. The objective is
to obtain the transfer function (the ratio C(s)/R(s) ) for the simple system.

+
- G(s)

H(s)

R(s)
C(s)

E(s)

F(s)

Figure 6. Simple closed-loop feedback system block diagram

In Figure 6, the following applies:

R(s) = input command

C(s) = output response

G(s) = forward gain

H(s) = feedback gain

F(s) = feedback

E(s) = error

(s) = Laplace operator

The error, E(s), is equal to the input command, R(s), minus the feedback value, F(s).

E s R s F s( ) ( ) ( )= −

The feedback value, F(s), is equal to the output, C(s), multiplied by the feedback gain, H(s).

F s C s H s( ) ( ) * ( )=

Substituting the equation for the feedback, F(s), into the equation for error, E(s), yields the
following relationship:

E s R s C s H s( ) ( ) ( ) * ( )= −

The output, C(s), is equal to the error, E(s), multiplied by the forward gain G(s).

C s E s G s( ) ( ) * ( )=
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Substituting the equation for E(s) into the above equation for C(s) yields

[ ]C s G s R s C s H s( ) ( ) * ( ) ( ) * ( )= −

Multiplying this through to eliminate the outermost parentheses yields

C s R s G s C s G s H s( ) ( ) * ( ) ( ) * ( ) * ( )= −

Collecting all of the C(s) terms on one side of the equation yields

R s G s C s C s G s H s( ) * ( ) ( ) ( ) * ( ) * ( )= +

which simplifies to

[ ]R s G s C s G s H s( ) * ( ) ( ) * ( ) * ( )= +1

The objective is to isolate the input command term, R(s), and the output term, C(s), on one side of
the equation. This is accomplished in two steps: first divide both sides of the equation by R(s) and
simplify.

[ ]R s G s

R s

C s G s H s

R s

( ) * ( )

( )

( ) * ( ) * ( )

( )
=

+1

This simplifies to

[ ]
G s

C s G s H s

R s
( )

( ) * ( ) * ( )

( )
=

+1

The second and final step is to divide both sides of the equation by [1+G(s)*H(s)] and again
simplify.

[ ]
[ ]
[ ]

G s

G s H s

C s G s H s

R s G s H s

( )

( ) * ( )

( ) * ( ) * ( )

( ) * ( ) * ( )1

1

1+
=

+
+

Simplifying this gives the desired relationship, or transfer function, between output and input
terms.

G s

G s H s

C s

R s

( )

( ) * ( )

( )

( )1+
=

This simple transfer function is the fundamental building block used in developing the transfer
functions for more complex models. The transfer function for this model is the forward gain, G(s),
divided by the product of forward gain, G(s), multiplied by feedback gain, H(s).
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Deriving a Second Order Transfer Function
Figure 7 illustrates a velocity controlled servo system. It is similar in appearance to the closed-
loop feedback system described in the previous section. It contains a single feedback loop with
only one element (Kf). The forward loop is a bit more complicated with a total of four elements.
The terms Kt and J are motor-defined terms and are usually obtained from the motor’s data sheet.
The terms Kp and Ki are drive velocity loop parameters. In this age of digital drives, these are
usually programmable. The element Kf is used for scaling the output velocity to the input velocity
and can be left as a value of 1 if the velocity units used throughout are rads/sec.

Kp

1/JS

Ki/S

Kt

Kf

Vin
Vout

+
-

+
+

Figure 7. Velocity controlled servo system

In Figure 7, the following applies:

Kp  =  velocity loop proportional gain (amp-sec/radian)

Ki  =  velocity loop integral gain (amp-sec2/radian)

Kt  =  motor torque constant (in-lb/amp)

J  =  system inertia (in-lb-sec2)

S  =  Laplace operator

Vin  =  velocity command

Vout  =  actual velocity

The first step in determining this system’s transfer function is to identify the forward gain, G(s),
and the feedback gain, H(s) by multiplying all the terms in the forward path

JS

SKiKpKt

JS

Kt

S

Ki
KpG s

)/(
*)(

+
=+=         KfH s =)(

Through substitution, the equation for the transfer function Vout/Vin = G(s)/[1+G(s)H(s)]
becomes

JS

SKiKpKfKt
JS

SKiKpKt

Vin

Vout
)/(

1

)/(

+
+

+

=

Multiplying out the terms in parentheses yields

2

2

1
JS

KtKfKi

JS

KtKfKp
JS

KiKt

JS

KtKp

Vin

Vout

++

+
=
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To simplify the equation, multiply both the numerator and denominator by JS2 to yield

KtKfKiKtKfKpSJS

KiKtKtKpS

JS

JS

JS

KtKfKi

JS

KtKfKp
JS

KiKt

JS

KtKp

Vin

Vout

++
+

=
++

+
=

22

2

2

2
*

1

Next, normalize the equation by multiplying both the numerator and denominator by 1/J (the
intent is to leave the S2 term in the denominator with a coefficient of 1).

J

KtKfKi
S

J

KtKfKp
S

J

KiKt
S

J

KtKp

J

J

KtKfKiKtKfKpSJS

KiKtKtKpS

Vin

Vout

++

+
=

++
+

=
2

2 /1

/1
*

For the purpose of this exercise, set Kf = 1, and Vin and Vout in units of rads/sec to yield

J

KtKi
S

J

KtKp
S

J

KiKt
S

J

KtKp

Vin

Vout

++

+
=

2

The denominator in this equation is called the characteristic equation and can be used to predict
the natural frequency (Wn) and damping factor (Z) of the second order system.

The generic form of the characteristic equation is

S ZWnS Wn2 22+ +

Solving for Wn and Z yields

J

KtKi
Wn =

KiJ

KtKp
Z *

2
=

In the above two equations, only four parameters dictate the dynamic performance of the velocity
loop. A question that arises frequently in the application of motion control products is what to do
with the drive tuning parameters to accommodate changes in load inertia. Since the motor torque
constant, Kt, is fixed and not subject to change, the values for Kp and Ki must be modified to
accommodate inertia changes. For a specified dynamic performance, both Kp and Ki must change
in proportion to inertia. For example, if the total inertia is doubled, both Kp and Ki must be
increased by a factor of 2 to maintain consistent dynamic performance.

Example Bandwidth Calculation
Using the following motor / drive system, determine the system’s velocity loop bandwidth and
damping:

torque constant, Kt = 5.93 in-lb/amp

motor inertia, J = 0.2036 in-lb-sec2

proportional gain, Kp = 3 amp-sec/rad

integral gain, Ki = 375 amp-sec2/rad
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Solving for Wn and Z yields

Wn
Kt Ki

J
rad hz= = = =

* . *

.
/ sec .

593 375

0 2036
104 165

Z
Kp Kt

Ki J
= = =

2

3

2

593

375 0 2036
0 42

*

.

* .
.

Second Order VisSim Model Development
The second order system is simulated using VisSim by utilizing the same model just used to
derive the second order transfer function. A step velocity command of 1 rad/sec is applied at
time 0. Figure 8 shows VisSim’s predicted response in the time domain.

3

1/S

1/S5.93

1

375

+
-

+
+

velocity command

Kp

Ki

Kt

Kf

velocity (rac/sec)

Time (sec)
0 .05 .1 .15 .2 .25 .3

0

.5

1.0

1.5

2.0

1/J

5

Figure 8. Second order VisSim model

Figure 9 shows VisSim’s response in the frequency domain, which yields direct information on
the bandwidth.
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Figure 9. Phase response of second order model
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Simulation Accuracy
By comparing the simulation’s step response with the “real” system, as shown in Figure 10, an
almost perfect match is revealed, indicating that the second order model is quite adequate.

Motor Velocity (rad/sec)

Time (sec)
0 .02 .04 .06 .08 .1 .12 .14 .16 .18 .2

-10.0

-7.5

-5.0

-2.5

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

 Real System

 Simulation

Figure 10. Comparison of simulated and actual step responses

Bear in mind earlier comments about embedded loops – the inner loop must run faster (have
higher response) than the outer loop, and the closer the loops run, the greater the interaction –
the second order system just modeled assumes a perfect current loop (infinite response), which
outputs the commanded current the instant the command is given.

In the real world, however, this is never the case. The motor windings contain inductance and
resistance that limit the rate at which current can rise. As higher and higher performance is
required from the velocity loop, the influence of the real-world current loop combined with the
motor’s resistance and inductance becomes important and can no longer be ignored.

To illustrate this point, the second order model can be expanded to include the effects caused by
the motor’s winding resistance and inductance. A simplified model of the motor’s electrical circuit
is shown in Figure 11. The intent is to introduce a first order delay equal to the electrical time
constant of the motor. In this example, the electrical time constant of the motor is 5 msec (that is,
in one time constant, the actual motor current reaches 63% of the commanded value). It will take
five time constants for the current to achieve the full commanded value.

1/S200
+
-

1/elec. time constant
current command

actual motor current

Figure 11. Simplified motor model

This is confirmed in Figure 12. A step current command of 1 amp is given. In 5 msec, the actual
current rises to approximately 0.6 amps and in 30 msec (5 time constants), it achieves the
commanded value of 1 amp.
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1/S200
+
-

1/elec. time constantcurrent command

Motor Current

Time (sec)
0 .005 .01 .015 .02 .025 .03 .035 .04

0
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1.0
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Figure 12. Current step response of the simplified motor model

The impact of this crude motor model can now be tested on the second order model. Shown in
Figure 13 is the response to a step command in velocity of 1 rad/sec. Comparing this with the
earlier step response makes it obvious that the effects of this motor can’t be ignored.

3

1/S

1/S5.93

1

375

+
-

+
+

velocity command

Kp

Ki

Kt

Kf

velocity (rad/sec)

Time (sec)
0 .05 .1 .15 .2 .25 .3

0

.5

1.0

1.5

2.0
1/J

5

1/elec. time constant
+
- 200 1/S

Figure 13. Second order VisSim model including the motor’s delay

This same problem arises when dealing with a closed position loop. At low position loop gains, it
is possible to ignore the influence of the velocity loop; however, as gains are increased, it
becomes necessary to include the velocity loop within the model.

Simulation Guidelines
Another potential problem concerns the simulation process. The simulation step size (or sample
time) must be faster than the fastest loop in the model to prevent erroneous results. In some
instances, the model “blows up” when run, generating simulation errors. In other situations, the
simulation appear normal but the results are skewed.

The models presented thus far have used a sample time of 1 msec. Simulations presented later will
require faster sampling. A good habit is to decrease sample time by a factor of 10, once the model
is functioning appropriately, to determine if performance changes. If performance does change,
faster sampling is required. The tendency may be there to leave sample times very short to obtain
the greatest accuracy, but it can become quite frustrating to wait minutes for each run of a
simulation to complete.

A basic rule for developing models is KIS, which stands for “Keep It Simple.” The more complex
the model the more information will be required about the real system and the more difficult the
model will be to use — especially if it is intended to be used by others. Use only the complexity
necessary to achieve reliable results.
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Developing a Second Order Velocity Loop Model
This section builds on the previously developed second order velocity loop model by improving
the motor model, adding a current loop, and enclosing the model within a position loop.

Servo Motor Design
The motor model illustrated earlier in Figure 8 incorporates the mechanical aspects (torque and
inertia) of the motor. The new model addresses the electrical aspects of the motor, including its
resistance, inductance, and counter electromotive force (emf).

1/S200
+
-

1/elec. time constant
current command

actual motor current

Figure 14. Simplified motor electrical model

In Figure 14, the motor model is represented as a simple first order delay function with the delay
due to the motor’s electrical time constant, L/R. This model is overly simplified. In actuality, the
input to the motor is not current, but voltage. A voltage is applied to the motor’s terminals causing
a current to flow in the motor’s windings. The initial rate of current rise is dictated by the motor’s
inductance, while the final current flow is dictated by the motor’s resistance. The corrected model
is shown in Figure 15.

1/S500
+
-

1/L
applied voltage motor current

0.1
R

Figure 15. Corrected motor electrical model

As models are developed it is always good to test individual components before incorporating
them into the main design. It is easier to identify and correct a problem when the model is simple
than when it has been incorporated into a complete system, which may include hundreds of
individual blocks. For the above model, it is easy to prove if it is correct. The final (steady-state)
current is V/R, where V is applied voltage and R is motor resistance. The electrical time constant
for the motor, τc , is L/R, where L is motor inductance and R is motor resistance.

I
V

R
ampsss = = =

100

01
1000

.
τ c

L

R
= = =.

.
. sec

002

01
0 02

Figure 16 shows that the simulation results are exactly as predicted above: the final current is
1000 amps while the time constant is 0.02 sec (630 amps at time = 0.02 sec). Thus, this
component of the model is correct and can be incorporated into the main model, as shown in
Figure 17.
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Figure 16. Motor current response to a step in applied voltage

The next element to add to the model is the motor’s back electromotive force constant (bemf) or
voltage constant (Kv). As motor speed increases, it generates a voltage that is opposite in polarity
to the applied voltage, which has the effect of reducing the voltage available to force current into
the motor. The net effect is that for a given applied voltage there is a finite speed that the motor
can achieve. Assuming a lossless motor, the final speed is equal to the applied voltage divided by
the voltage constant. However, this final speed will be reduced somewhat due to frictional losses
in the motor.

1/S500
+
-

1/Lapplied voltage
motor velocity

0.1
R

Kt

5.93

1/J

5 1/S

+
-

0.67
Kv

Figure 17. Complete motor model

In Figure 18, the motor’s inductance and resistance are added to the earlier model, which
incorporated only the motor’s torque constant and inertia. In addition, the motor’s voltage
constant, Kv, is added. To test this model, the same 100 volt step input used in Figure 16 is
applied. The final velocity (ω) equals

ω = = =V

Kv
rad

100

67
149 25

.
. / sec

As shown in Figure 18, the final velocity is approximately 150 rad/sec. There are now two
integrators in the motor model (one tied to the inductance and the other to the inertia) creating a
second order model. Therefore, the time constant is not as easy to predict as with the previous
motor model. The fact that this is a second order model also explains the overshoot seen in the
velocity response.
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Figure 18. Motor velocity resulting from a step in applied voltage
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The real motor reacting to an applied voltage does not exhibit the amount of overshoot indicated
above, nor does it achieve the predicted velocity. This is due to viscous damping that can be added
to the model and is nothing more than a speed dependent loss. While adding viscous damping to
the model is easy, it is frequently difficult to determine how much to apply from the
manufacturer’s motor data sheet. The model in Figure 19 has an unrealistically high level of
viscous damping added (10 in-lb/rad/sec) to show its effect and the motor’s response to a 100 volt
command plotted. The overshoot and settling time are reduced, as well as the final velocity, which
is only 120 rad/sec instead of 150 rad/sec, as in the simulation in Figure 19.

1/S500
+
-

1/L
applied voltage

0.1
R

Motor Velocity (rad/sec)

Time (sec)
0 .02 .04 .06 .08 .1 .12 .14 .16 .18 .2
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5.93
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5 1/S

+
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0.67
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+
-

10

viscous damping
D

Figure 19. Complete motor model’s response to a step in applied voltage

This motor model can now be incorporated into larger models of an entire motion control system.
It requires a voltage command for input and provides motor velocity as the output. A total of six
parameters, as listed in Table 1, are required for it to function.

Table 1. Motor Model Parameters
Parameter Units Description

input volts voltage applied to motor

L henry motor inductance

R ohm motor resistance

Kt in-lb motor torque constant

J in-lb-s2 motor inertia

Kv v-s/rad motor back emf constant

D in-lb-s/rad viscous damping

output rad/s velocity

Current Loop
The just completed motor model requires a voltage input, while the previously developed velocity
loop model outputs a current to the motor. The addition of a current loop will make these two
models compatible. The motor model shown in Figure 20 is outfitted with a current loop by
adding two more elements: a current loop gain (KpI) and a summing junction. The gain of the
current loop has the units volts/amp. A current command is summed with the current feedback,
the error is amplified by the current loop gain, KpI, and output as a voltage command to the
motor.
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viscous damping
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current feedback
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Figure 20. Motor model with current loop added

If the model is functioning correctly, a step current command at the input causes the velocity to
ramp up while the current feedback levels off quickly to the commanded value. This is shown in
Figure 21.
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0.67

+
-

1/S5

1/J
5.93

Kt

R

0.1

1/L
+
- 500 1/S

+
- 14

current feedback

current command
KpI

current loop gain

motor velocity

current (amps)

Time (sec)
0 .001 .003 .005 .007 .009

0

5

10

15

20
velocity (rad/sec)

Time (sec)
0 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01

0

1

2

3

Figure 21. Motor’s velocity response to a step current command

A 10 amp current command is issued 0.001 sec into the simulation. Within 1 msec the current
feedback reaches 10 amps and, as anticipated, the velocity begins ramping. The slope of this ramp
is

accel rate
torque

inertia

rad

s
= = =

10 593

2

296 5
2

* .

.

.

velocity accel rate time
rad

S
= = =* . *.

.
296 5 009

2 6

Ten msec into the simulation (9 msec after the current command is issued), the velocity is 2.5
rad/s, exactly as predicted.
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Velocity Loop
The next step in the model development closes the velocity loop around the motor and current
loop model. This is accomplished by adding the following elements to the model:

• Two summing junctions

• One velocity loop proportional gain (Kp)

• One velocity loop integral gain (Ki)

• One integrator (1/S)

A velocity command is summed with the velocity feedback signal and the difference (or error) is
applied to both the proportional gain loop (Kp) and the integral gain loop (Ki). The result of each
is summed together and becomes the command to the current loop.
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Figure 22. Complete third order velocity loop model

The simulation shown in Figure 22 shows the system’s response to a 10 rad/sec step velocity
command. The response is virtually identical to the one shown earlier in Figure 8 for a simple
second order system which demonstrates that under the conditions of this simulation, the simple
model would be more than sufficient.

Table 2 lists the parameters required for the model shown in Figure 21. As models are developed,
especially when used by others, it is wise to limit the complexity of the model and only include
those elements that are likely to impact the model’s intended use. The model in Figure 22 requires
nine parameters; the simplified model in Figure 8 requires only four parameter (Kp, Ki, Kt, and J).
Both have equally reliable results.

As with any model it is always possible to further refine and define the system. Not included in
the model shown in Figure 22 are such elements as voltage and current limits, an integrating
current loop, and power bridge (that is, pulse width modulation effects). In the vast majority of
motion control simulations motor/drive model complexity beyond what has been demonstrated is
unnecessary. In practice, the simple second order model is sufficient for most situations.
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Table 2. Velocity Loop Model Parameters
Parameter Units Description

input rad/s velocity

Kp amp-sec vel. loop proportional gain

Ki amps vel. loop integral gain

KpI volts/amp current loop prop. gain

L henry motor inductance

R ohm motor resistance

Kt in-lb motor torque constant

J in-lb-s2 motor inertia

Kv v-s/rad motor back emf constant

D in-lb-s/rad viscous damping

output rad/s velocity

Position Loop
The final step in developing the system model is to incorporate a position loop into the diagram.
This involves closing one additional loop around the already-closed velocity and current loops.
Only two additional elements are added to the velocity loop model to accomplish this: another
summing junction and position loop gain (PLG). The units of PLG are 1/sec.
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Figure 23. Complete position loop model

Position loop gain (PLG) is most easily described as the inverse time constant of the position loop.

PLG
tc

= 1

In Figure 23, the time constant is 1 sec. Thus, given a step command in position, the system’s
response is such that in 1 sec, 63% of the final position is achieved and in 3 sec, 95% of the final
position is achieved.
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Another way to look at position loop gain is in terms of its output-to-input relationship (transfer
function). The output is the command to the velocity loop and therefore has the units rad/sec,
while the input is position in radians. In industry, PLG is most frequently expressed as

PLG
units of velocity command

unit of error
=

/ min

.0 001

Traditionally, a PLG of 1 is the “magic” gain (everybody seems to start with this gain — and
frequently ends with this gain). For example, if the units in use are English, the PLG is expressed
as “1 inch per minute per mil,” meaning one inch per minute of velocity command for each
thousandth of an inch of position error. Examining this further yields

PLG
in

in

in

in
1

1

0 001

1 1

0 001

1

0 001

1

60

1

0 06
= = = =

/ min

. min
*

. . min
*

min

sec . sec

Recall that earlier PLG was also expressed as

PLG
tc

= 1

Therefore, for a PLG of 1 IPM/mil, the time constant of the position loop is 60 msec and the PLG
is

PLG = =1

06
16 67

.
.

Programming PLG = 16.67 into the system model causes the system to respond to a step
command in such a manner that at 0.06 seconds, 63% of the command value will be achieved and
after 0.18 seconds (3 time constants), 95% of the commanded value is achieved.
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Figure 24. System response to a step position command

As predicted, with a command of 10 radians the model in Figure 24 shows 6.3 radians at t = 0.06
sec and 9.5 radians at t = 0.18 sec. Notice also that the position curve is not a smooth exponential
curve but rather has a perturbation at about 0.04 sec. This effect is due to the velocity loop
response. Each embedded loop must operate faster than the previous loop. In fact, to rule out the
affects of an inner loop, it must operate an order of magnitude (10x) faster. In practice, a loop
separation of 5:1 is usually acceptable.
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The next simulation shown in Figure 25, increases both Kp and Ki by a factor of 10, which
increases the bandwidth of the velocity loop. The position response is now a perfect exponential
curve.
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Figure 25. System response with proper separation of position and velocity loops

The position loop just described is a following error system. This means that if the system is
operating at some steady-state velocity, there is a constant following error. For example, if the
system is operating with a gain of 1 IPM/mil at a speed of 500 in/min, the actual position lags
behind the commanded position by 0.5 inch. This is seen by re-arranging the PLG formula as
shown

PLG
in

in error
=

/ min

.001

Rearranging this yields

error
in

PLG
in= = =/ min*. *.

.
001 500 001

1
5

A speed dependent error is acceptable for point-to-point positioning applications, such as pick-
and-place robots, but cannot be tolerated for applications, such as printing and packaging. For
these applications, the solution is known as velocity feed forward. With velocity feed forward, a
position command is issued to the position loop, and a velocity command is also issued to the
velocity loop, bypassing the position loop.

To look at the affects of adding velocity feed forward to the model, a different command function
is required. Instead of a simple step in position, a velocity-ramp-to-speed is used. To model a
velocity-ramp-to-speed, two ramps of equal rate (100 rad/sec2) are incorporated in the diagram, as
shown in Figure 26. One ramp is delayed by 1 sec and of opposite direction. This provides a ramp
to a velocity of 100 rad/sec. The resulting velocity is then integrated to obtain position.
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Figure 26. Velocity-ramp-to-speed command generator

The position output from the ramp generator is applied to the position input of the system model
while the velocity output from the ramp generator is summed with the output of the position loop
(velocity command). The first simulation, shown in Figure 27, is run with the old model and the
just-developed ramp generator for command. An additional plot is added to show following error.
The following error is predicted as

error
rad

PLG
rad= = =/ sec* . * .

.

0 001 100 0 001

16 67
6

This is exactly what the position error plot indicates in Figure 27.
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Figure 27. Position error without velocity feed forward

The simulation is run again, this time with velocity feed forward added, as shown in Figure
28. The velocity output from the ramp generator is applied directly to the velocity loop.

Notice the dramatic decrease in following error. What was 6 rads of error without feed forward is
reduced to zero at steady-state. Even during acceleration, the error remains under 0.01 radian.
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The model just presented is likely the most useful model for the simulation of motion control
systems. The ramp generator can be replaced with any block that synthesizes the desired
command profile. Velocity feed forward can be included or eliminated simply by connecting the
velocity output of the generator block to the summing junction. If a less complex model of the
motor is desired, the output of the velocity loop summer can be applied directly to the Kt block,
effectively removing the current loop and the motor’s electrical characteristics. The parameters,
which must be provided to the model, are described in Table 3.
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Figure 28. Position error with velocity feed forward

Table 3. Parameter Values
Parameter Units Description

input rad position

PLG 1/sec position loop gain

Kp amp-sec velocity loop proportional gain

Ki amps velocity loop integral gain

KpI volts/amp current loop prop. gain

L henry motor inductance

R ohm motor resistance

Kt in-lb motor torque constant

J in-lb-s2 motor inertia

Kv v-s/rad motor back emf constant

D in-lb-s/rad viscous damping

output rad position


