
���������	
�����

��������	

��

��������	��
�	�������

����������������
���������������������	���

�	������
 © 1999 Visual Solutions, Inc.
© 1991-99 Ward Systems Group,
Inc. All rights reserved.
All rights reserved.
vnn-30-01

Visual Solutions, Inc.
487 Groton Road
Westford, MA 01886

 �������!� VisSim, VisSim/Neural-Net, and flexWires are trademarks of Visual
Solutions. Other products mentioned in this manual are trademarks or
registered trademarks of their respective manufacturers.

�	��������������
���
�	�� The information in this manual is subject to change without notice and
does not represent a commitment by Visual Solutions. Visual Solutions
does not assume responsibility for errors that may appear in this
document.

This manual is the property of Visual Solutions. It is based on the
NeuroWindows documentation, which is the property of Ward
Systems Group, Inc. Visual Solutions has licensed the
NeuroWindows documentation and Software from Ward
Systems Group, Inc. Portions of the NeuroWindows
documentation are contained in this manual.

No part of this manual may be reprinted or reproduced or utilized
in any form or by any electronic, mechanical, or other means
without permission in writing from Visual Solutions and Ward
Systems Group, Inc. The Software may not be copied or
reproduced in any form, except as stated in the terms of the
Software license agreement, or with special permission from
Visual Solutions and Ward Systems Group, Inc.

���

�	�
��
�

"��#��� �� $��

Registering your software .. vii
Conventions ... vii
Getting help... viii

Online help.. viii
Technical support.. viii

����
���%���
�	���
�	� ��&�

When to use a neural network ... xi

����
���'����

������������������
(�! �������������������������������������� %

Setting up your neural network .. 1
Choosing a learning method .. 2
Choosing network characteristics .. 3
Using weight files .. 6

Training a neural network .. 9
Choosing training sets.. 10
Initiating training with the Learn parameter .. 10
When to stop training... 11
Verifying results .. 11

Applying VisSim/Neural-Net to financial applications ... 12

����
������)��!�"�	����
�	��*��������+�
�	������������������������������ %�

How a Back Propagation network works ... 13
A Back Propagation with momentum network.. 14
Common Back Propagation networks.. 15

Learning nonlinear relationships with Back Propagation .. 15
The Back Propagation network structure ... 15

Normalizing inputs and outputs for Back Propagation 15

��������

�$

Choosing the hidden layers for Back Propagation... 16
Choosing the neurons per layer for Back Propagation 16
Choosing the learn rate for Back Propagation ... 16
Choosing the weight ranges for Back Propagation .. 16

Solving the Exclusive OR problem with a Back Propagation network............................ 17
Experimenting with advanced Back Propagation .. 19

����
���,��"�	-�-����
���*��������+�
�	� �����������������������������������'%

When to use Probabilistic learning... 22
The Probabilistic network structure ... 22

Choosing discrete state categories for Probabilistic... 22
Choosing the smoothing factor for Probabilistic ... 22

Training a Probabilistic network .. 23
Combining Probabilistic and Kohonen/LVQ learning ... 23

����
���.����������/�������	��*��������+�
�	� ��������������������������'.

The General Regression network structure .. 26
Choosing the smoothing factor for General Regression 26

Training a General Regression network... 27

����
���0��1	�	����*�2�*��������+�
�	� ����������������������������������'3

Uses of Kohonen/LVQ... 29
The Kohonen/LVQ network structure ... 30

Choosing discrete state categories for Kohonen/LVQ....................................... 30
Choosing the learn rate for Kohonen/LVQ.. 30
Choosing the neighborhoods for Kohonen/LVQ ... 30
Initializing weights for Kohonen/LVQ .. 31
Choosing the maximum epochs for Kohonen/LVQ... 31

Types of Kohonen/LVQ... 31

4������&�4��)�������������$��
���"������� ��������������������������������

Balancing the inverted pendulum problem with a controller ... 34
Balancing the inverted pendulum with a neural network... 35

Setting the inputs and outputs for the inverted pendulum 36

4������&�)�� �����	�	�� ��5

��������

$

4������&������
�����������������������
 ����������������������������������� ,%

Installation requirements .. 41
Installation procedure... 42

���& ��� ,�

$��

"��#���

This manual describes how to use VisSim/Neural-Net to perform pattern matching
from with the neuralNet block. Many neural network paradigms are offered that
cover both supervised and unsupervised learning. Among the methods offered are
Back Propagation, Kohonen Learning, Probabilistic, and General Regression.

VisSim/Neural-Net is based on NeuroWindows, which is licensed from, and owned
by, the Ward Systems Group, Inc.

/����
�������	����	#
(���
Before you begin using VisSim/Real-TimePRO or VisSim DACQ, please fill out the
enclosed registration card and mail it to us. As a registered user, you will receive a
free subscription to The flexWire, along with discount promotions and VisSim
workshop schedules.

�	�$��
�	��
This manual assumes that you are already familiar with the VisSim graphical user
interface. If you need to review the interface, consult your “VisSim User's Guide.”

The following typographical conventions are used to make this manual:

Visual convention Where it’s used

SMALL CAPS To indicate the names of keys on the keyboard.

ALT+F, R
SHIFT+INSERT

In procedures, key sequences sometimes follow commands to
indicate that the command can be executed from the
keyboard. If the keys are separated by plus signs (+), hold
down the keys at the same time. If the keys are separated by
commas (,), press and release each key in the order shown.

ALL CAPS To indicate directory names, file names, and acronyms.

Initial Caps To indicate menu names and command names.

���	�
���

$���

In addition, unless specifically stated otherwise, when you read “click the mouse...”
or “click on...,” it means to click the left mouse button.

��

��������
To help you get the most out of VisSim, the following online information is
available:

• Online help. The online help contains step-by-step instructions for using
VisSim features.

• Online release notes. A file named READMERT.TXT is installed in your main
VisSim directory. This file contains last minute information and changes that
were discovered after this manual went to print. For your convenience, you
should read this file immediately and print a copy of it to keep with this manual.

6����������
VisSim’s Help program provides online instructions for using VisSim.

� To open Help

• Do one of the following:

To Do this

Access the top level of help Select Help from the menu bar or press
ALT+H.

Access help on the selected block Click on the Help command button in the
dialog box for the block.

� To close Help

• In the Help window, choose File > Exit, or press ALT+F4.

 �������������	�

When you need assistance with a Visual Solutions product, first look in the manual,
read the README.WRI file, and consult the online Help program. If you cannot
find the answer, contact the Technical Support group via toll call between 9:00 am
and 6:00 pm Eastern Standard Time, Monday through Friday, excluding holidays.
The phone number is 978-392-0100.

When you call in, please have the following information at hand:

• The version of VisSim and VisSim/Real-TimePRO (or VisSim DACQ), and the
version of the software operating environment that you are using

• All screen messages

�	�
���

�&

• What you were doing when the problem happened

• How you tried to solve the problem

Visual Solutions also has the following fax and email addresses:

Address/Number What it’s for

978-692-3102 Fax number

bugs@vissol.com Bug report

doc@vissol.com Documentation errors and suggestions

sales@vissol.com Sales, pricing, and general information

tech@vissol.com Technical support

&�

����
���%

�
�	���
�	�

"What are the uses of neural network?" The answer can be as unique as the person
who asks the question. Neural networks became known in the academic, scientific,
and business communities for solving such probems as credit card application
approval, target recognition, and speech recognition. Then in the late 1980s, the
commercial community began using neural networks for process control applications
in oil refineries, to design chemicals, track student performance, make stock market
and other numeric predictions, optimize biological experiments, predict employee
retention, analyze manpower, optimize athletic training, forecast sales, identify
chemical compounds, flag product defects on assembly lines, and analyze
waverforms. Customer ideas swelled the list to hundreds of different applications.

7����
	����������������
(�!
Neural networks excel at problem diagnosis, decision making, prediction, and other
classifying problems where pattern recognition is important and precise
computational answers are not readily available. The best examples are problems
where input patterns must be classified into two or more categories or problems
where numeric forecasts are required. For supervised learning, there must be sample
patterns or historical cases available from which the newtworks may learn, but the
system excels over traditional computational or rule-based methods when both the
samples and the patterns to be categorized later are not always precisely defined.
This "generalized" learning and recognition is the type of pattern recognition where
neural networks are at their best.

What is VisSim/Neural-Net In VisSim/Neural-Net, a neural network consists of a
system of neurons connected by weighted links. In the most fundamental way, neural
network mimics your brain’s own problem-solving process. Just as you apply

����
���%����	��������

&��

knowledge gained from past experiences to new problems or situations,
VisSim/Neural-Net takes previously solved examples to train the weight values in a
network. This is known as training a neural network. For a network to be trained,
sample patterns or historical data must be available to teach the network. Once the
training process is completed, the neural network is able to make decisions,
classifications, or forecasts when presented with new data.

VisSim/Neural-Net excels at problem diagnosis, decision making, prediction, system
identification and other problems where pattern recognition is important and precise
computational answers are not readily available.

VisSim/Neural-Net can solve two kinds of problems: identification of input patterns
into discrete categories, and smooth numeric predictions based on input data
streams.

%

����
���'

��

������������������
(�!

This chapter describes how to:

• Choose a learning method

• Choose network characteristics, including inputs, outputs, categories, hidden
layers, number of neurons per layer, learn rate, momentum, neighborhoods,
smoothing factor, weight ranges, and maximum epochs

• Use weight files

• Train a neural network

��

��������	������������
(�!
When you insert a neuralNet block into a diagram, it appears as follows:

The input marked with a t represents training set input. Typically, when you train a
neural network, you present it with a data set containing input facts (or parameters or
variables) with the corresponding answers or results. This is usually called the
"training set." For more information on training neural networks, see "Training a
neural network," later in this chapter.

����
���'������������������	��������	�

'

� To describe a network

1. Click the right mouse button over the neuralNet block.

The Neural Net Setup dialog box appears.

2. Specify the desired values.

3. Click on the OK button, or press ENTER.

��		������������������
�	�
There are two kinds of learning for the neuralNet block: supervised and
unsupervised. There are also two kinds of learned outputs: discrete and continuous.
The table below shows the relationship between the learning method and the type of
output.

Output Type Learning Method

Supervised Unsupervised

Continuous Back Propagation
BP/Momentum

General Regression

Discrete Probabilistic Kohonen/LVQ

Continuous output networks can have continuous real valued outputs. Discrete
output networks can only produce an integer that describes the category into which
the input pattern falls.

In supervised learning, you train a network by presenting a sequence of known input
and output patterns. For discrete valued outputs, you train by supplying the category

����
���'������������������	��������	�

�

number in the output pattern. Note that you may have more than one input pattern in
the same output category.

The supervised continuous learning methods available in VisSim/Neural-Net are
Back Propagation, BP/Momentum, and General Regression. The method used for
supervised discrete learning is Probabilistic.

Unsupervised learning is a discrete output method that learns its own classification
category from the training data. Generally, you need only supply one training data
point per output category; however, the network may decide that two data points are
too similar to warrant their own category. You can see that it makes sense to comb
your data to look for representative examples. The method used for unsupervised
discrete learning is called Kohonen Learning Vector Quantizer (Kohonen/LVQ).

No learning method is guaranteed to give an absolutely correct answer, especially if
patterns are incomplete or conflicting. Results should be evaluated in terms of the
percentage of correct answers. In this regard, the technology is similar to biological
neural functioning after which it was designed, and differs significantly from other
conventional computer software.

��		�������
(�!�������
����
���
Choosing the appropriate characteristics for a network is part of the art of
developing a neural network. This section briefly examines the various
characteristics you can apply to your network.

��		���������
�
There are two types of input to the neuralNet block:

• System parameter input

• Training set input

The Inputs parameter indicates the number of system parameter input connector tabs
for the neuralNet block.

Training set input is connected to the input connector tabs labeled with a t. You
control the number of training set input connector tabs with the Output parameter.
For more information, see "Choosing outputs," later in this chapter.

Note that input connector tabs labeled with a t are not affected by the Inputs
parameter. These connector tabs are reserved for training input data. You control the
number of t input connector tabs with the Outputs parameter. For example, if you
specify two inputs and two outputs for a neuralNet block, VisSim adds four input
connector tabs and two output connector tabs to the block, and labels the top two
input connector tabs with ts.

����
���'������������������	��������	�

,

Unlike other blocks, you don’t add and delete inputs and outputs with the Edit
menu’s Add and Remove Connector commands, but rather through the Inputs and
Outputs parameters in the Neural Net Setup dialog box. This dialog box

When you’re training a neuralNet block, the test input data tells the neuralNet block
the correct output for each input.

��		�����	�
��
�
The Outputs parameter indicates the number of output connector tabs and the
number of t input connector tabs that VisSim adds to the neuralNet block when the
Back Propagation, BP/Momentum, or General Regression learning method is
activated. If either the Kohonen/LVQ or Probabilistic learning method is activated,
this parameter is dimmed and unavailable for use. The input connector tabs labeled
with a t are reserved for training input data. If, for example, you specify two outputs
and two inputs for a neuralNet block, VisSim adds four input connector tabs and two
output connector tabs to the block, and labels the top two input connector tabs with
ts.

When you’re training a neuralNet block, the test input data tells the neuralNet block
the correct output for each input.

Note that you cannot use the Edit menu’s Add and Remove Outputs commands to
adjust the number of output connector tabs on neuralNet blocks.

��		�����
�����
��	����
The Categories parameter lets you choose the number of discrete states that the
network can discriminate for the Kohonen/LVQ and Probabilistic learning methods.

��		�����
������-���	#��������������
The Hidden Layers parameter indicates the number of hidden layers in the neural
network. There can be up to 32 hidden layers in a network.

����
���'������������������	��������	�

.

There are no hidden layers in a Kohonen/LVQ neural network. When you activate
Kohonen/LVQ learning, the Hidden Layers parameter is automatically reset to 0 and
dimmed. Similarly, there is only one hidden layer in a Probabilistic neural network.
When you activate Probabilistic learning, the Hidden Layers parameter is
automatically reset to 1 and dimmed.

��		�����
������-���	#�����	������������
The Neurons/Layer parameter indicates the number of neurons per hidden layer.
There can be up to 32,767 neurons per hidden layer.

��		�����
�����������
�
The Learn Rate parameter lets you regulate how weights are changed when a
network is trained. The amount of weight modification is proportional to the error
count. A learning rate is the constant of proportionally. For example, when the Learn
Rate parameter is set to .5, the weight change is a function of only half of the error.

As you increase the value of the Learn Rate parameter, not only do the weight
modifications increase but also the speed at which the network learns. Valid values
for this parameter range between 1e-5 and 1. If the Learn Rate parameter exceeds 1,
the network may become unstable.

��		�����
����	���
��
The Momentum parameter keeps a Back Propagation network from oscillating when
higher learning rates are used. You can only use the Momentum parameter when the
BP/Momentum learning method is activated. Valid values for this parameter range
between 0 and 1.

��		�����
��������-	��		��
The Neighborhoods parameter controls the number of adjacent nodes initially
affected by the Kohonen/LVQ learning method. Valid values for this parameter
range from 0 to the number of neurons in the hidden layers.

��		�����
�����		
�����#��
	�
The Smoothing parameter controls the probability density estimates being output for
a Probabilistic network. Valid values for this parameter range from .01 to 1.

��		�����
���(����
�������
When the network is first created, the values of the weights will be initialized to ±
the value specified for the Weight Range parameter. Valid values for this parameter
are greater than 0 and less than 1. The recommended values are between .3 and .6.

����
���'������������������	��������	�

0

��		�����
�����&�������	���
The Max Epochs parameter lets you set the maximum number of iterations through a
data set for a Kohonen/LVQ network. Any value greater than 0 is a valid value for
this parameter. Typical values range between 200 and 1000.

������(����
�#����
A weight file is an ASCII text file containing the weights of the connections between
neurons. An example of a weight file that has been opened in the Microsoft Notepad
utility is shown below.

You save weights at the end of a training session, and you can use saved weights at
the beginning of a training session.

��$������������(����
�
You can save learned weights at the end of a training session by activating the Save
Weights at Sim End parameter.

� To save learned weights

1. Click the right mouse button over the neuralNet block.

A Neural Net Setup dialog box appears.

2. Activate the Save Weights at Sim End parameter.

3. In the Weight File box, enter the name of the weight file into which the learned
weights are to be saved.

4. Click on the OK button, or press ENTER.

����
���'������������������	��������	�

5

/������������$���(����
�
You can read in saved weights at the beginning of a training session by activating
the Read Weights at Sim Start parameter.

� To read saved weights

1. Click the right mouse button over the neuralNet block.

A Neural Net Setup dialog box appears.

2. Activate the Read Weights at Sim Start parameter.

3. In the Weight File box, enter the name of the weight file from which the learned
weights are to be read.

4. Click on the OK button, or press ENTER.

8�������(����
�#����
Use the Find command button to select the weight file into which weights are to be
saved or from which weights are to be read.

� To select a weight file

1. Click the right mouse button over the neuralNet block.

The Neural Net Setup dialog box appears.

2. Enter the name of the weight file in the Weight File box.

3. Click on the OK button, or press ENTER.

� To select a weight file using the Find command button

1. Click the right mouse button over the neuralNet block.

The Neural Net Setup dialog box appears.

2. Click on the Find command button.

����
���'������������������	��������	�

9

The Select File dialog box appears.

3. Select the weight file from the accompanying list boxes. The selected weight
file will appear in the File Name box.

4. Click on the Open button, or press ENTER.

VisSim displays the previous dialog box. The selected weight file will appear in
the Weight File box.

6�������(����
�#����
You use the Microsoft Notepad utility to open weight files for examination or
editing. For instructions on using the Notepad utility, see the "Microsoft Windows
User’s Guide."

� To open weight files

1. Click the right mouse button over the neuralNet block.

The Neural Net Setup dialog box appears.

2. Enter the name of the weight file to be browsed or find it using the Find
command button.

3. Click on the Browse command button.

VisSim starts the Microsoft Notepad utility with the specified file.

����
���'������������������	��������	�

3

/���

����(����
�
The Reset command button resets the weights to random initial states. The Reset
command button is typically used when your network has learned incorrect data.

� To reset weights

1. Click the right mouse button over the neuralNet block.

The Neural Net Setup dialog box appears.

2. Click on the Reset command button.

 �������������������
(�!
Once you have created a network the next step is to train the network from the data
in your training set. How you train a neural network depends on the learning method
you use. The following table describes the type of learning you should use based on
the size of the training data.

Training data size Multiple pass training Single pass training

Unlimited Back Propagation
BP/Momentum

Limited to neurons in
hidden layer

Kohonen/LVQ General Regression
Probabilistic

For either of the Back Propagation methods, you can train over any number of data
points, and you keep training multiple times through your training set until the
average error between the network output and the training output goes below a
certain threshold.

For the remaining methods, you can only have as many training data points as you
have neurons in the hidden layer. The training set contains sample input data with
known outputs. You should also have a separate test data set to test the network after
training is complete.

For unsupervised learning, you supply representative input patterns and the network
assumes each pattern represents a unique category.

As you might expect, Probabilistic and General Regression, which are one-pass
learning methods, are fast to train. However, they can take longer to execute since
they may require more neurons to adequately learn the data set, and thus require
more processing at classification time.

����
���'������������������	��������	�

%:

��		�����
����������
�
An adequate number of training sets must be available to allow the network to cover
the problem domain. If you do not have enough actual data to create an adequate
training set, you may want to contrive combinations of inputs and outputs to produce
training sets. In this way, you can assure a wide variety of training sets and make
sure that there are enough training sets for each of the output categories.

It is normal to find problems where several different patterns of inputs will result in
the same classifying outputs. If, however, there are samples with identical inputs that
result in different outputs, the training may not go below a specified learning
threshold.

��
��
����
��������(�
��
���*�����������
��
Learn parameter in the Neural Net Setup dialog box. You may also want to specify
the use of a weight file to be read in at the start of the training session or to be
written to at the end of the training session.

Before you can initiate the training process, you should connect a plot block to the
output side of the neuralNet block in which to observe the learning process. During
training, network output represents the mean square error for the Back Propagation
learning methods.

� To train a network

1. From the Edit menu, choose the Setup Block command (ALT+E, S).

2. Point to the neuralNet block and click the mouse.

3. Make the following selections:

• Activate the Save Weights at Sim End parameter to save the learned
weights to a weight file after training is complete.

• Optionally, activate the Read Weights at Sim Start parameter to read in
learned weights that have been previously saved.

• In the Learning Methods box, choose a learning method.

• In the Characteristics box, choose the network characteristics.

• Activate the Learn parameter.

4. From the Simulate menu, select the Go command (ALT+S, G), or click on xxx in
the toolbar.

5. In the plot block, observe the network estimation error. When the error is at an
acceptable level, you can terminate the simulation with the Simulate menu’s
Stop command (ALT+S, S).

����
���'������������������	��������	�

%%

7����
	��
	��
�������
A challenging aspect of building a successful neural network is knowing when to
stop training. If you train too little, the network will not learn the patterns. If you
train too much, the network will learn the noise or memorize the patterns and not
generalize well. You can tell how close your network is by examining the error
factor (which is a value that represents the sum of the squares of the differences
between the actual output values with which the network is trained) and the
network’s predicted outputs.

����#����������
�
The best way to measure the adequacy of the model after you have built it is to
compare its answers with those in your test set. Only simple networks will be 100%
accurate.

If the number of correct classifications is not high enough, there are a number of
things you can try to correct the problem:

• Change the inputs and outputs to better represent the problem. Use inputs
that are more predictive. This is usually the most effective change you can
make.

• Change the training sets. Make sure training sets are representative of all
classifications, and add more if necessary. Try removing anomalies, if there are
any. Make sure all training sets have correct data and classifications.

• Increase the number of hidden neurons.

• Increase the training. Sometimes a problem will eventually fall below a
specified learning threshold if the error factors are still getting smaller.

• Broaden the classifications. When more than a few answers are close to more
than one category, try expanding the classifications.

• Decrease the learning rate and momentum. A learning rate of .1 with a
momentum of 0.0 often works well.

• Randomly vary the order of the training sets. This prevents like sets from
clustering together, and removes time series dependencies.

����
���'������������������	��������	�

%'

4������������������������
�
	�#����������������
�	��
If you’re working on financial applications or other time-series problems, you may
find it helpful to create additional input variables derived from the raw input data
they already have. These additional inputs are usually of the following types:

• Lagged versions of raw data. For example, if your raw data is today’s price
and you’re trying to predict tomorrow’s price, then it may be helpful to include
yesterday’s price, and the price the day before, as well.

• Averages of previous raw data. For example, rolling averages.

• Changes (deltas) in the raw data. For example, you might want the difference
in today’s price and yesterday’s.

Financial data may have to be normalized if it is so old that the price patterns are
much higher now. There are many ways to do this, like measuring prices from a
moving baseline and introducing percentage differences. You can also omit very old
data.

Remember that the most successful financial models have less to do with learning
rate, momentum, hidden neurons, etc., and depend most of all on how predictive or
leading your input indicators are.

%�

����
����

)��!�"�	����
�	��*�������
+�
�	��

This chapter describes Back Propagation learning and Back Propagation with
momentum learning.

;	(���)��!�"�	����
�	����
(�!�(�!�
To train a neural network using a Back Propagation learning method, you must
present the neuralNet block with a data set containing sample inputs and
corresponding desired outputs. This data is typically referred to as your training set.
You should also have a second set of data, in the same format, with which to test the
network later on. This data set is called your test set.

As illustrated in the figure below, a Back Propagation neural network usually has
three or more layers of neurons. Each layer is connected or linked to the neurons in
the next layer. These links have numeric weights that are applied to the current value
held by the neuron. Input values in the first layer are weighted and passed to the next
layer, called the hidden layer. Neurons in the hidden layers produce outputs that are
based on the sum of the weighted values passed to them. The hidden layers pass
values to the output layer in the same fashion. The output layer then produces the
desired results, such as a prediction or classification.

����
������������	�������������	������������

%,

The neural network learns by adjusting the interconnection weights between layers.
The answers the network produces are repeatedly compared with the correct answers
supplied in the training set. After each comparison, the connecting weights are
adjusted slightly in the direction of the correct answers.

Eventually, if the problem can be learned, a stable set of weights adaptively evolves,
which will produce reasonable answers for all of the sample decisions or predictions.
The real power of the neural network is evident when it can produce good results for
data it has never seen before.

4�)��!�"�	����
�	��(�
���	���
�����
(�!
A Back Propagation with momentum, or BP/Momentum, network works in much
the same way as a Back Propagation network. The difference lies in the momentum
variable which allows you to control the proportion of the last weight change to be
added into the new weight change. Momentum keeps a network from oscillating
when higher learning rates are used. The momentum variable usually ranges from 0
to 1; however, typical values are between 0.3 and 0.7.

����
������������	�������������	������������

%.

�	��	��)��!�"�	����
�	����
(�!�
A three-layer neural network is suitable for the vast majority of working
applications, including those involving pattern classification. Each neuron in the
input layer contains data corresponding to an input variable of the problem. The
neurons in the output layer contain the network’s classifications or results.

If a three-layer network doesn’t solve your problem, there’s a good chance that you
need to work on your input variables or your sample training set.

• In predictive networks, check that the input variables in your training set are
predictive.

• If you’re classifying patterns, make sure that your training set is complete and
that the patterns are not conflicting. If the training set contains conflicting
patterns, more variables may be required to make adequate determinations.

*���������	������������
�	�������(�
��)��!�"�	����
�	�
Nonlinear problems often exhibit better learning dynamics with a Back Propagation
learning method if a small learning rate (≤ 01.) is used with a small (≤ 01.) or no
momentum term. (There are no firm rules of thumb on this, and experience and trial-
and-error are still the best way to know for sure.) If you choose a Back Propagation
learning method, the size of the weight matrices will be cut in half. If your network
is large and you are running out of memory, then do the same thing.

If all your inputs and outputs are binary (0 or 1), you may want to choose the
BP/Momentum learning method and select a learning rate of 0.6 and momentum of
0.9. If your data patterns contain considerable noise, try lowering the learning rate
and momentum. For example, a lower learning rate of 0.05 or 0.1 with a momentum
of 0.5 or 0.6.

 ���)��!�"�	����
�	����
(�!��
���
���

�	�����<��������
������	�
��
��#	��)��!�"�	����
�	�
Inputs and outputs of Back Propagation networks need to be normalized.

Inputs to the neuralNet block need to be in the range of 0 to 1, and outputs work best
when in the range of 0.1 to 0.9. For instance, if an input’s actual value can range
from 0 to 20, then that input needs to be divided by 20 before being fed to the
neuralNet block.

Be sure to remember to re-normalize Back Propagation output results by multiplying
the result by the inverse of the input scaling. For instance, if a training input was
normalized with a gain of 0.1, then the corresponding output should be multiplied by
10.

����
������������	�������������	������������

%0

��		�����
�����������������#	��)��!�"�	����
�	�
In a Back Propagation network, there is usually one hidden layer; however, there can
be more. The purpose of the hidden layers is to enable the network to learn more
complex patterns. They serve as feature detectors.

��		�����
�������	�������������#	��)��!�"�	����
�	� ��
Part of the art of designing a neural network is building it with the appropriate
number of hidden neurons for the application. In a Back Propagation network, if the
middle layer is too large, the neuralNet block will memorize the training sets and not
be able to generalize when presented with data with which it hasn’t been trained. If
too few hidden neurons are used, the neuralNet block may not be powerful enough
to hold all of the unique situations found in the training sets. Training may never get
to low enough error factors, or, if it does, the system may not be able to reproduce
the output patterns.

��		�����
�����������
��#	��)��!�"�	����
�	� �
The learning rate lets you regulate how much the weights are changed when the
network is trained. The amount of weight modification is proportional to the amount
of error. The learning rate is the constant of proportionality. For example, if the
learning rate is set to 0.5, the weight change is a function of only half of the error.
The larger the learning rate, the larger the weight changes, and therefore the faster
the learning.

Learning rates should not exceed 1 or the system could become unstable.

��		�����
���(����
��������#	��)��!�"�	����
�	� ���
The weight range sets the limits for the range of random generated values that are
used to initialize the network weights when the network is first created, or reset. The
randomly generated weight values will be in the range of ± the weight range
parameter.

For instance, if a weight range of 0.3 is selected, then the weight values will initially
be randomly generated in the range of -0.3 to +0.3. The initial weight range is
important for determining the learning speed of the neural network. Typical values
vary between 0.2 and 0.7.

����
������������	�������������	������������

%5

�	�$����
���=&�����$��6/���	-����(�
����)��!�"�	����
�	����
(�!
The following example illustrates how to build a three-layer Back Propagation neural
network to solve the exclusive OR problem. In this problem, there are two inputs and
one output. When either input is ON, the output is ON. When both inputs are OFF, the
output is OFF. When both inputs are ON, the output is OFF. The data would look like
this:

Input 1 Input 2 Output

1 0 1

0 1 1

0 0 0

1 1 0

A three-layer neural network can solve this problem provided the hidden layer has at
least three neurons. If the hidden layer has two neurons, the answer is correct only
half the time.

� To construct a block diagram that solves the exclusive OR problem

1. Construct a block algorithm that generates random sequences of 0s and 1s, as
shown below:

2. Encapsulate the algorithm in a compound block called T1 and make a copy of it.

3. To generate a training set, feed the T1 compound blocks into the xor block. The
output from the xor block is the training set, or known correct output.

����
������������	�������������	������������

%9

4. To create a three-layer Back Propagation neural network, insert a neuralNet
block in the diagram.

5. Wire the output from the T1 compound blocks, along with the training set
generated by the xor block into the neuralNet block. The training set is wired to
the connector tab labeled with a t to indicate that it is training input data.

6. From the Edit menu, choose the Setup Block command (ALT+E, S).

7. Point to the neuralNet block and click the mouse.

A Neural Net Setup dialog box appears in which to set up the neural network.

Make the following changes in the dialog box:

• In the Weight File box, enter xor.net.

• Under Characteristics, enter 2 in the Inputs box; enter 1 in the Outputs box;
enter 1 in the Hidden Layers box; enter 4 in the Neurons/Layers box; enter
0.7 in the Learn Rate box; and enter 0.4 in the Weight Range box.

����
������������	�������������	������������

%3

• Activate the Learn parameter.

• Under Learning Methods, activate the Back Propogation parameter.

The training process begins when you initiate a simulation with the Simulate menu’s
Go command or the button in the toolbar. The neuralNet block learns by
repeatedly comparing its output with the training patterns. Each time, the
interconnection weights between layers in the network are adjusted slightly in the
direction of the training patterns.

To observe the training process you can wire two plot blocks into the diagram. As
shown in the figure below, the top plot block displays the correct, known exclusive
OR results; the bottom plot block shows the NeuralNet block learning.

When the output from the neuralNet block approaches 0, learning is complete and
you can halt the training process by stopping the simulation.

=&�������
����(�
����$������)��!�"�	����
�	�
Below are a few suggestions for ways you can define your models. Remember, you
are not dealing with a science, but rather an art. Very often something that works
with one type of problem will not work with another.

• Adjust the number of hidden neurons. Larger numbers store more patterns
but tend to cause the model to memorize patterns instead of being able to
generalize about them.

• Adjust the learning rate and momentum. Momentum enables learning rates
to be higher without de-stabilizing the learning. You can also try varying the

����
������������	�������������	������������

':

learning rate and momentum as learning proceeds by stopping the simulation,
changing the values, and then continuing the simulation.

'%

����
���,

"�	-�-����
���*��������+�
�	�

The Probabilistic supervised learning method is a type of pattern classifier that uses
probability density function estimates to make classifications. A Probabilistic
network is similar in effect to a k-nearest neighbor classifier, because it uses a
degree of averaging of nearest neighbors dictated by the density of training patterns.

When using the Probabilistic learning method, training is very fast because there is
no error feedback and subsequent adjustment of weights. Training a Probabilistic
network in VisSim/Neural-Net really only involves loading the weight matrices. The
work is done during propagation when the network inspects all training patterns to
decide which category contains the patterns that the new pattern most closely
matches.

Since training a Probabilistic network is almost instantaneous, training can be done
in real time. Training patterns can be added or replaced at any time, and as soon as
there are patterns for each possible category, classification can take place.
Classification will improve as more training patterns are added.

If your training sets are very large, classification may take longer when using
Probabilistic learning than when using Back Propagation or BP/Momentum. In such
cases, using the Kohonen/LVQ and Probabilistic learning methods together will
decrease the time to classify. Kohonen/LVQ can be used to find representative
exemplars from the full database. These, in turn, can be used as the reduced training
set for Probabilistic learning.

����
���,���	���������������	�����������

''

7����
	�����"�	-�-����
�����������
Typically, you should use the Probabilistic learning method in place of Back
Propagation when:

• The input data is sparse.

• The training patterns need to be classified into n categories, as in unsupervised
Kohonen/LVQ. Unlike Kohonen/LVQ, Probabilistic training involves showing
the network the correct categories during training. If, however, your problem
requires that outputs be continuous predictions rather than categories, you
cannot use Probabilistic training. Use General Regression instead.

 ���"�	-�-����
�����
(�!��
���
���
Probabilistic networks are three-layer networks wherein the training patterns are
presented to the input layer and the output layer has one neuron for each possible
category. The network produces activations in the output layer corresponding to the
probability density function estimate for that category. Thus, the highest output
represents the most probable category. There must be as many neurons in the hidden
layer as there are training patterns.

��		�����������
���
�
����
��	�����#	��"�	-�-����
��
Probabilistic requires that you supply a finite number of discrete states among which
it can discriminate.

��		�����
�����		
�����#��
	��#	��"�	-�-����
��
Probabilistic requires that you supply a smoothing factor like the one used with
General Regression. Note that the smoothing factor only takes effect after the
network has been trained. You may change it and experiment with it; however, the
proper setting of the smoothing factor is critical for most of the problems you will
encounter. Too large a smoothing factor will cause the network to ignore features of
the output set, while too small a smoothing will cause exact recognition of the
original training set, but fail to recognize input patterns that are close to a training set
member.

If you map your inputs between 0 and 1, smoothing factors from .001 to
approximately .5 are typical. If you are not scaling inputs, another range of
smoothing factors will be more appropriate.

A systematic approach is recommended for determining the best smoothing factor
for each Probabilistic network. You should create an independent test set with
patterns not found in the training set. Process the entire test set with a number of
smoothing factors. Each time the test set is processed, compute the mean squared

����
���,���	���������������	�����������

'�

error for the test set. use the smoothing factor that produced the smallest mean
squared error on the test set.

To compute the mean squared error for a test set with one output, simply:

1. Square the difference between the actual outputs and network-produced outputs
for each pattern.

2. Add the squares for all the patterns.

3. Divide by the number of patterns.

If you have more than one output, you should:

1. Scale the outputs into the same range.

2. Sum the squares of differences for all of the outputs for a pattern.

3. Sum them over all patterns.

4. Divide them by the number of patterns.

If you iterate through a number of smoothing factors, you will find that one produces
a smaller mean squared error than the others. Use this smoothing factor for your new
data.

 ����������"�	-�-����
�����
(�!
Training a Probabilistic network consists of only one pass of the patterns. Each
pattern will be presented to the network only once during training.

Unlike Back Propagation, Probabilistic training does not require that patterns be
propagated forward before the training. All that is required is that a pattern be
represented to the input layer.

In a Probabilistic network, the outputs will be integers representing categories
starting at 0.

�	�-������"�	-�-����
�������1	�	����*�2���������
The Probabilistic learning method is exceptionally well-suited to handle multiple
interacting networks. However, because Probabilistic learning can slow down
significantly with higher numbers of categories, you may want to categorize at a
high level first. In this situation, you can use Kohonen/LVQ networks to create a
smaller set of training patterns for each category.

����
���,���	���������������	�����������

',

The process involves building a Kohonen/LVQ network for each Probabilistic
output category. Suppose, for example, you want a specific category to have only 50
training patterns, but the original set of training patterns contains 3,500 training
patterns for that category. You can:

1. Build a Kohonen network with the same number of inputs as the Probabilistic
network.

2. Set the number of neurons in the Kohonen/LVQ output layer to 50.

3. Train the Kohonen network with the 3,500 original patterns. The 50 weight
vectors that result in the link will be average, or "center of cluster," vectors for
the original 3,500.

4. Train the Probabilistic network with the average vectors.

Repeat these steps for each of the Probabilistic categories.

'.

����
���.

��������/�������	��*�������
+�
�	�

VisSim/Neural-Net contains another very fast supervised learning method called
General Regression, which responds well to localized regions of input space.

Both Probabilistic and General Regression were invented by Dr. Don Specht. The
key difference between them is that Probabilistic produces only integer-valued
outputs, whereas General Regression produces continuous-valued outputs.

General Regression excels over Back Propagation when handling continuous
function approximation. For functions as simple as y x= 2 or z y x= −2 2 , General
Regression will approximate very accurately, while Back Propagation can make only
rough approximations after many learning epochs. On the other hand, noisy data
without any known underlying function – such as, financial or market predictions –
may fair better with Back Propagation, which is less localized. Unlike Back
Propagation, General Regression will not produce outputs outside the range of those
with which it was trained.

����
���.������	������	����������	�����������

'0

 �����������/�������	����
(�!��
���
���
General Regression is a three-layered network where there must be one hidden
neuron for each training pattern (unless you cluster them in some way). There are no
training parameters, such as learning rate and momentum. The only adjustment
which must be made is a smoothing factor like the one used with Probabilistic. The
smoothing factor for General Regression is used only after the network is trained.

��		�����
�����		
�����#��
	��#	����������/�������	�
General Regression requires that you supply a smoothing factor like the one used
with Probabilistic. Note that the smoothing factor only takes effect after the network
has been trained. You may change it and experiment with it; however, the proper
setting of the smoothing factor is critical for most of the problems you will
encounter. Too large a smoothing factor will cause the network to ignore features of
the output set, while too small a smoothing will cause exact recognition of the
original training set, but fail to recognize input patterns that are close to a training set
member.

If you map your inputs between 0 and 1, smoothing factors from .001 to
approximately .5 are typical. If you are not scaling inputs, another range of
smoothing factors will be more appropriate.

A systematic approach is recommended for determining the best smoothing factor
for each General Regression network. You should create an independent test set with
patterns not found in the training set. Process the entire test set with a number of
smoothing factors. Each time the test set is processed, compute the mean squared
error for the test set. use the smoothing factor that produced the smallest mean
squared error on the test set.

To compute the mean squared error for a test set with one output, simply:

1. Square the difference between the actual outputs and network-produced outputs
for each pattern.

2. Add the squares for all the patterns.

3. Divide by the number of patterns.

If you have more than one output, you should:

1. Scale the outputs into the same range.

2. Sum the squares of differences for all of the outputs for a pattern.

3. Sum them over all patterns.

4. Divide them by the number of patterns.

����
���.������	������	����������	�����������

'5

If you iterate through a number of smoothing factors, you will find that one produces
a smaller mean squared error than the others. Use this smoothing factor for your new
data.

 ������������������/�������	����
(�!
Like a Probabilistic network, a General Regression network is essentially trained
after only one pass of the training patterns. In addition, General Regression is
capable of functioning after only a few training patterns have been entered, although
it obviously improves with additional patterns.

'3

����
���0

1	�	����*�2�*��������+�
�	�

VisSim/Neural-Net offers a powerful and popular unsupervised learning technique
called Kohonen/LVQ, which stands for Learning Vector Quantizer. This algorithm
learns to make pattern classifications by making its own clustering scheme for
patterns. The patterns (or vectors) are clustered into categories based on their
proximity to each other.

�����	#�1	�	����*�2
Unsupervised Kohonen/LVQ networks have been used for:

• Image processing

• Control

• Speech processing

• Data compression

• Combinatorial optimization

Another emerging use of Kohonen/LVQ is as a pattern classifier front-end for
supervised learning. A Kohonen/LVQ network looks at input patterns and classifies
them. Based on this classification, the pattern is then sent to one of two or more
specialized Back Propagation networks for training and further pattern recognition.
Later, when the back propagation networks are trained and being utilized, the
Kohonen/LVQ network is still acting as a front-end, routing each pattern to the
correct Back Propagation network.

����
���0�� ������!�"#����	�����������

�:

 ���1	�	����*�2���
(�!��
���
���
In a Kohonen/LVQ network, there are only two layers:

• An input layer, where patterns of P variables are placed.

• An output layer, which has one neuron for each possible category. If you want
your patterns to be categorized into at most N classifications (clusters), then the
output layer will contain N neurons. Kohonen/LVQ may decide your patterns
have less than N categories, but N will be the maximum it can find.

Kohonen/LVQ works much like supervised learning techniques in the sense that
patterns are presented to the input layer, then propagated to the output layer and
evaluated. Only one output neuron is the winner. That is, the weight vector (all the
weights) leading to the winning neuron is closer in space to the input pattern than
that of any other output neuron. The network weights are then adjusted during
training by bringing this weight vector slightly closer to the input pattern. This
process is repeated for all patterns for a number of epochs usually chosen in
advance.

��		�����������
���
�
����
��	�����#	��1	�	����*�2
Kohonen/LVQ requires that you supply a finite number of discrete states among
which it can discriminate.

��		�����
�����������
��#	��1	�	����*�2
Kohonen/LVQ learning differs from Back Propagation learning with respect to its
sensitivity to learning rate. In Kohonen/LVQ, the learning rate must be lowered
slightly but steadily as the training progresses, causing smaller and smaller weight
changes. This forces the weights to stabilize to a state where input vectors close to
one another are consistently categorized together because the weight vectors to the
output neurons adjust themselves to a kind of center of gravity for the cluster they
define.

��		�����
��������-	��		���#	��1	�	����*�2
To function properly, Kohonen/LVQ also depends on another technique, commonly
referred to as "on center/off surround." Without this technique, one neuron could end
up winning all the time. During training, the weights leading to the winning neuron
are adjusted; however, the winning neuron needs to have a positive influence on its
neuron neighbors (the neurons that physically surround it). Therefore, the weights
for the neurons in the neighborhood around the winning neuron are changed during
training, too. The size of the neighborhood can vary. For example, it may start off
fairly large (sometimes even close to N) and decrease with learning until during the
last training events, the neighborhood is zero, meaning by then only the winning

����
���0�� ������!�"#����	�����������

�%

neuron’s weights are changed. By that time, the learning rate is also very small, and
the clusters are fairly well defined. The subsequent (small) changes in weight are
only affecting refinements on the cluster arrangements.

The output slab can be viewed as either a one-dimensional slab of N elements with
one-dimensional neighborhoods, or as a two-dimensional slab with two-dimensional
neighborhoods. In the one-dimensional case, neighborhood size refers to the number
of neurons to the left and right of the winning neuron that participate in the winner’s
reward of weight changes.

In the two-dimensional case, the slab is viewed as a matrix or grid, with some
number of rows and columns. The product of rows and columns must be equal to the
total number of neurons, N. The size of the neighborhood refers to the number of
rows up or down, and then number of columns left and right that define a small
square around the winner.

The schemes, or equations, with which you lower learning rate and neighborhood
size are up to you. They are largely problem dependent. Some common techniques
are suggested in this chapter. For each problem, experimentation will be required
before your Kohonen/LVQ network is successful. It is not at all as automatic as
supervised Back Propagation learning.

When learning is complete, propagation of pattern will produce activation in the
output neurons.

��
����<����(����
��#	��1	�	����*�2
The main problem with Kohonen/LVQ is that sometimes one neuron starts winning
all the time, not giving the others a chance to change weights and get closer. To
avoid this problem you can use large neighborhoods, or you can adjust the weight
vectors before you initiate training so that they are closer to the training patterns.
The magnitude of your random weights should be approximately the magnitude of
your pattern elements.

��		�����
�����&�������	����#	��1	�	����*�2
Kohonen/LVQ lets you control the maximum number of iterations through the data
set. With each cycle, the neighborhood and learn rate are reduced proportionally
such that each parameter reaches zero by the end of the last cycle. Kohonen/LVQ
performs this adjustment automatically as training progresses. At the end of the last
cycle, training is complete.

Typical iterations through the data set range between 200 and 1000.

 �����	#�1	�	����*�2
In Kohonen/LVQ, proximity of the pattern to the weight vectors is determined by
measuring the Euclidean distance between them in P dimensional space, where P is

����
���0�� ������!�"#����	�����������

�'

the number of patterns. The activation in the neuron is actually the square of the
distance between the pattern and the weight vector for that neuron. Therefore, the
winner is the neuron with the minimum activation.

Unlike Back Propagation, Kohonen/LVQ will actually run fine without mapping to
[0,1].

��

4������&�4

)�������������$��
���"�������

Balancing an inverted pendulum is a classic example that can be solved with a neural
network. As shown in the diagram below, the inverted pendulum is a two-
dimensional dynamic problem, in which both the cart and pole are able to move in
the same one-dimensional plane.

The task for the neural network is to learn how to keep the pole balanced by moving
the cart back and forth to counteract the non-zero angular velocity of the pole.

4������&�4����������������$�	�����������%

�,

)���������
�����$��
��������������	-����(�
�����	�
�	����
A sample block diagram named CARTPOLE.VSM is automatically installed in
\VISSIM\NNET. This diagram simulates the control of an inverted pendulum using
a classical controller is shown below.

The controller sends a voltage between 0 and 5 V to the cart. The voltage tells the
cart which way and how far to move in order to keep the pole upright. The pole
starts at 0.8 radians (Theta’s initial value) from the vertical position. The STOPCND
compound block stops the simulation if the pole falls too far past a vertical position.

4������&�4����������������$�	�����������%

�.

)���������
�����$��
������������(�
�������������
(�!
The diagram below shows how to add a neural network in parallel to the classical
controller, or known good system, and train the network to control the inverted
pendulum.

Several blocks have been added to the original diagram to integrate the neural
network with the controller.

• The button and merge blocks are used to select either the controller or the
neuralNet block output.

• The BIAS and OUTBIAS compound blocks are used to normalize the input data
and re-normalize the output data. Using a Back Propagation algorithm, all inputs
to a neural network must have values in the [0,1] range. Except during training,
if you normalize the input data, you’ll have to re-normalize the output data to its
original or preferred range.

4������&�4����������������$�	�����������%

�0

��

����
�������
������	�
��
��#	��
�����$��
�����������
To establish the inputs and outputs used for training the inverted pendulum neural
network, click the right mouse button over the neuralNet block to access its dialog
box.

There are four inputs for the inverted pendulum neural network:

• X, which controls the cart’s position

• �X , which controls the cart’s velocity

• Theta, which controls the angle position from vertical in radians

• Theta� , which controls the angular velocity

All four values must be normalized to the [0,1] range with the BIAS compound
block for a Back Propagation algorithm to work.

The output from the inverted pendulum neural network is a continuous number in
the [0,1] range that is re-normalized to be a voltage in the [0,5] range, just like the
controller.

During training, the output of the neural network is the root mean square error of the
neural network’s answer to the given inputs, and the correct result.

�5

4������&�)

 �����	�	��

This appendix defines neural network terms used in this manual.

Activation Function

A function that maps the output of the neuron from a possibly infinite
domain into a pre-specified range. In VisSim/Neural-Net, activation
functions are taken care of for you.

Back Propagation

The technical term for one of the algorithms used for supervised learning.
Weight changes are sent back, or back propagated, through the network to
modify weights after the output layer has been evaluated. Back Propagation
is currently the most popular algorithm because, although it may train
slowly, it nevertheless provides the best results for a wide variety of
problems.

Bias Neuron

A single neuron in every slab (supervised learning). You cannot modify a
bias neuron because it is always turned on (for example, set to 1), and
because it is internal.

Epoch

A complete pass through the network of all the patterns in the training set.

Error Factor

A computed value equal to the sum of the squares of the differences
between the predicted values and actual values for all output neurons in the
slab (supervised learning).

4������&�)��&�	%������'

�9

Inputs

The variables used to make pattern classifications or forecast decisions. If,
for example, you try to predict the Standard and Poor’s stock price index for
the following month based on the New York gold price, the average three-
month treasury bill rate, and retail sales, the gold price, treasury bill rate,
and retail sales are the inputs to the neural network, and the stock price
index is the network’s output.

Layer

A group of slabs in a network. There can be a single slab or multiple slabs
in the same layer; however, there can only be one input layer and one
output layer in a network. There may be multiple hidden layers.

Learning Rate

A variable that you set for regulating how much weights are changed when
the network is trained. The amount of weight modification is proportional
to the amount of error. The learning rate is the constant of proportionality.
For example, if the learning rate is set to .5, then the weight change is a
function of only half of the error. The larger the learning rate, the larger the
weight changes, and therefore the faster the learning. Learning rates should
not exceed 1 or the system could become unstable.

Link

A term used to designate the connection between slabs in a network. A
single link represents all the weighted connections between individual
neurons in one slab to individual neurons in a connected slab. For example,
if you have one slab with three neurons connected to another slab with two
neurons, the connection will be a single link, but that link will represent six
weighted connections between individual neurons. In supervised learning,
the bias neuron is also connected.

Momentum

A variable that computes the proportion of the last weight change to be
added into the new weight change. Momentum provides a smoothing effect
to the weight changes and allows for the use of larger learning rates. When
momentum is not included in large learning rates, the results are an
oscillation of weight changes. Learning may never complete, or the model
may converge to a solution that is not optimal.

Network

A neural network that consists of groupings of layers plus links connecting
the slabs in the layers.

4������&�)��&�	%������'

�3

Neuron

A data element that contains a value, usually in the range of 0 to 1 (written
in this manual as [0,1]).

Slab

A grouping of neurons.

Outputs

The pattern classifications or predictions made by the neural network.

Propagate

A method of moving data from one layer to the next in a neural network.
Neuron values in the preceding layer are multiplied by the weights to a
neuron in the succeeding layer. The products are then summed. An
activation function is applied to the sum and the result is placed in the
neuron in the succeeding layer.

Supervised Learning

A method of training a neural network by presenting it with a data set
containing sample input facts (or parameters or variables) and
corresponding answers (or results). The four supervised learning methods
available in VisSim/Neural-Net are Back Propagation, BP/Momentum,
Probabilistic, and General Regression. See also "Unsupervised Learning."

Test Set

A second set of patterns from which to determine the correct classification
or answer. You may use the patterns in the test set to verify how well your
network is working. You should not include the test set as part of your
training set because the way to assess a neural network’s performance is to
examine how well it generalizes on patterns it has never seen before.

Training Set

The set of patterns of inputs (and, for supervised learning, correct outputs)
used to train the network.

Unsupervised Learning

A method of training a neural network where correct outputs in the sample
patterns are not available. Kohonen/LVQ is the unsupervised learning
algorithm available with VisSim/Neural-Net. Kohonen/LVQ learns to make
pattern classifications by making its own clustering scheme for patterns.
The patterns are clustered into categories based on their proximity to each
other. See also "Supervised Learning."

4������&�)��&�	%������'

,:

Weights

The values that represent connection strengths between neurons. The
weights are changed as values are passed from one layer to another. To
reinforce a connection positively, the weight is raised. Conversely, to
inhibit a connection, the weight is lowered.

,%

4������&��

��
�����������������������

To install VisSim/Neural-Net on your computer, you use the Install program that
comes with the software. This program automatically installs all the necessary
programs and files on your hard disk. After you have completed the installation,
store your installation disks in a safe place away from direct sunlight or heat.

Before you install VisSim/Neural-Net, make sure that VisSim is already installed on
your computer. If you’ve purchased VisSim and VisSim/Neural-Net together, follow
the installation procedure in the "VisSim User’s Guide" to install VisSim. Then
follow the installation procedure in this appendix to install VisSim/Neural-Net.

��
����
�	����>�������
�
VisSim/Neural-Net runs on personal computers using the Intel 80286 or higher
processor, including the IBM Personal System /2 Series, the IBM AT, and 100%
compatibles. To use VisSim/Neural-Net, your computer must have the following
components:

• Microsoft Windows (version 3.0+)

• Visual Solutions VisSim (version 3.0+)

• 100K of RAM

• 50K of free hard disk space

• 3½" disk drive

• EGA or higher resolution monitor

4������&��������������"����%!���	��(���

,'

��
����
�	����	������
This installation procedure assumes that you are installing from drive A to your hard
disk. If you are installing from a different drive, substitute the correct drive
designation in the installation procedure.

� To install VisSim/Neural-Net

1. Start Microsoft Windows.

2. Insert the VisSim/Neural-Net disk into drive A and lock it into place.

3. Select File from the Program Manager menu bar and choose the Run command
(ALT+F, R).

A dialog box appears.

4. In the text box, type A:INSTALL and click on the OK button, or press ENTER.

A second dialog box appears.

Install asks you where you want to install VisSim/Neural-Net. You can accept
the default path (C:\VISSIM) or type in a different directory. Note that the
directory you specify must be the one in which your current VisSim executable
resides.

If you choose to install VisSim/Neural-Net over an existing version, Install
replaces old VisSim files (.VSM) with new ones. You can control which
existing VisSim files are overwritten as a result of the installation by activating
the Ask Before OverWriting Existing Files check box. An X in the box activates
confirmation.

5. To accept the information in the dialog box, click on the Continue button, or
press ENTER.

Install displays a dialog box that shows the progress of the installation.

6. When the installation is complete, VisSim displays a dialog box indicating that
VisSim/Neural-Net has been successfully installed.

7. Click on the OK button, or press ENTER.

When you start up VisSim, the neuralNet block is available for use.

,�

���&

—A—

Activation function, 37

—B—

Back Propagation learning
hidden layers, 16
learning rates, 16
network structure, 15
neurons, 16
normalizing inputs, 15
overview, 13
re-normalizing outputs, 15
solving the exclusive OR problem, 17
solving the inverted pendulum problem,

33
three-layer network, 15
weight ranges, 16

Bias neuron, 13, 37
BP/Momentum learning

hidden layers, 16
learning rates, 16
neurons, 16

normalizing inputs, 15
overview, 14
re-normalizing outputs, 15
specifying momentum, 5
weight ranges, 16

—C—

Continuous learned output, 2
Continuous output networks, 2

—D—

Discrete learned output, 2
Discrete output networks, 2

—E—

Epoch, 37
Error factor, 37
Exclusive OR problem, 17

���)

,,

—F—

Financial applications, 12

—G—

General Regression learning
network structure, 26
overview, 25
smoothing factor, 5, 26
training, 27

—H—

help
accessing, viii
closing, viii

Hidden layers
with Back Propagation, 16
with BP/Momentum, 16

—I—

Input connector tabs
adjusting the number of, 3
labeled with a t, 4

Input data, 3, 38
training, 4, 10

Installing VisSim/Neural-Net
installation procedure, 42
installation requirements, 41

Inverted pendulum
solving with neuralNet block, 35
solving without neuralNet block, 34

—K—

Kohonen/LVQ learning, 30

hidden layers, 4
learning rates, 30
maximum epoches, 6, 31
neighborhoods, 5, 30
output categories, 4, 30
overview, 29
types of, 31
weight initialization, 31
with Probabilistic, 23

—L—

Layer, 38
Learned output

continuous, 2
discrete, 2

Learning methods. See also specific learning
method

continuous, 2
discrete, 2
supervised, 2
unsupervised, 2

Learning rate
with Back Propagation, 16
with BP/Momentum, 16

Link, 38

—M—

Multiple-pass training, 9

—N—

Neural networks, xi. See also specific network
type

characteristics, 3
hidden layers, 4
input data, 3
learn rate, 5

���)

,.

maximum epoches, 6
momentum, 5
neighborhoods, 5
neurons per layer, 5
output categories, 4
output data, 4
smoothing factor, 5
weight ranges, 5

continuous learned output, 2
describing, 1
discrete learned output, 2
inverted pendulum, 33
learning methods, 2
multiple-pass training, 9
one-pass training, 9
stopping training, 11
supervised learning, 2
training, 10
training sets, 10
unsupervised learning, 2
verifying results, 11
weight files, 6

neuralNet block
Categories parameter, 4, 30
Find command button, 7
Hidden Layers parameter, 4
Inputs parameter, 3
Learn parameter, 10
Learn Rate parameter, 5, 30
learning methods, 2
Max Epoch parameter, 6
Maximum Epochs parameter, 31
Momentum parameter, 5
Neighborhoods parameter, 5, 30
Neurons/Layer parameter, 5
Outputs parameter, 4
overview, 1
Read Weights at Sim Start parameter, 7
Reset command button, 9
Save Weights at Sim End parameter, 6
Smoothing Factor parameter, 22

Smoothing parameter, 5, 26
Weight Range parameter, 5

Neurons, 39
with Back Propagation, 16
with BP/Momentum, 16

Nonlinear relationships, learning, 15
Normalizing inputs

with Back Propagation, 15
with BP/Momentum, 15

—O—

One-pass training, 9
Output categories, 4
Output connector tabs

adjusting the number of, 4
Output data, 4

—P—

Probabilistic learning
hidden layers, 4
network structure, 22
output categories, 4, 22
overview, 21
smoothing factor, 5, 22
with Kohonen/LVQ, 23

—R—

Re-normalizing outputs
with Back Propagation, 15
with BP/Momentum, 15

—S—

Slab, 39

���)

,0

Supervised learning, 2. See also specific
learning method

—T—

technical support, viii
Terminology, 37
Test set, 39
Training a network, 9, 10

general regression, 27
probabilistic, 23
verifying results, 11
when to stop, 11

Training input data, 4
Training set, 10, 39

—U—

Unsupervised learning, 2. See also specific
learning method

—W—

Weight files, 6
finding, 7
opening, 8
resetting, 9
saving learned weights, 6

Weight initialization, 31
Weight ranges, 5

with Back Propagation, 16
with BP/Momentum, 16

